What is greatest integer function?

Algebra Level 4

1 + 2 + 3 + + 2004 = ? \large \lfloor \sqrt{1} \rfloor + \lfloor \sqrt{2} \rfloor + \lfloor \sqrt{3} \rfloor + \cdots + \lfloor \sqrt{2004} \rfloor =\, ?

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 58850.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 22, 2016

S = 1 + 2 + 3 + 4 + 5 + 6 + + 2004 = 1 1 st term + 1 + 1 + 2 4 th term + 2 + 2 + . . . + 3 9 th term + 3 + 3... + 44 = n = 1 43 ( ( n + 1 ) 2 n 2 ) n + ( 2004 4 4 2 + 1 ) ( 44 ) = n = 1 43 ( 2 n + 1 ) n + 3036 = 2 n = 1 43 n 2 + n = 1 43 n + 3036 = 2 ( 43 44 87 6 ) + 43 44 2 + 3036 = 54868 + 946 + 3036 = 58850 \begin{aligned} S & = \lfloor \sqrt{1} \rfloor + \lfloor \sqrt{2} \rfloor + \lfloor \sqrt{3} \rfloor + \lfloor \sqrt{4} \rfloor + \lfloor \sqrt{5} \rfloor + \lfloor \sqrt{6} \rfloor + \cdots + \lfloor \sqrt{2004} \rfloor \\ & = \underbrace{1}_{1^\text{st} \text{ term}}+1+1+\underbrace{2}_{4^\text{th} \text{ term}}+2+2+...+\underbrace{3}_{9^\text{th} \text{ term}}+3+3...+44 \\ & = \sum_{n=1}^{43} ((n+1)^2-n^2)n + (2004-44^2+1)(44) \\ & = \sum_{n=1}^{43} (2n+1)n + 3036 \\ & = 2 \sum_{n=1}^{43} n^2 + \sum_{n=1}^{43} n + 3036 \\ & = 2\left(\frac{43\cdot 44 \cdot 87}6 \right) + \frac {43 \cdot 44}2 + 3036 \\ & = 54868 + 946 + 3036 \\ & = \boxed{58850} \end{aligned}

Nice solution, +1 did the same way :)

Sabhrant Sachan - 4 years, 11 months ago

There are 3, '1's,...5,'2's....7,'3's.... . . . (2n+1), 'n's.
2004 = 44.76605857 , s o a b o v e n = 43 , + 2004 ( 4 4 2 ) + 1 = 69 4 4 s . n = 1 43 ( 2 n + 1 ) n + 69 44 = n = 1 43 ( 2 n 2 + n ) + 69 44 = 2 n ( n + 1 ) ( 2 n + 1 ) 6 + n ( n + 1 ) 2 n 43 + 69 44 = 1 3 43 44 87 + 1 2 43 44 + 69 44 = 58850 \sqrt{2004}=44.76605857,\ \ so \ above \ n=43,\ +2004-(44^2)+1=69\ '44's.\\ \displaystyle \sum_{n=1}^{43}(2n+1)*n+69*44=\sum_{n=1}^{43}(2n^2+n)+69*44=2*\dfrac{n*(n+1)(2n+1)} 6 +\dfrac{n(n+1)} 2|_{n_{43}} +69*44\\ =\frac 1 3 *43*44*87+ \frac 1 2*43*44+69*44=\huge\ \ \ \color{#D61F06}{58850}

nice observation..+1

Ayush G Rai - 4 years, 11 months ago
Prince Loomba
Jun 21, 2016

(1×3)+(2×5)+(3×7)+(4×9)+...=sum (n×(2n+1)) till n=43 and then 69×44, because with 44 only 69 numbers are there in the question

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...