What is it?

Calculus Level 3

0 1 x 1 x d x \int _{ 0 }^{ 1 }{ \left| x \right| \left| 1-x \right| dx}

can be expressed as the form a b \frac { a }{ b } where a a and b b are co-prime integers what is the the value of a + b a+b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joel Yip
Mar 14, 2015

x 1 x d x = 1 24 ( 3 ( 3 2 x ) x 2 s g n ( x ) + s g n ( 1 x ) ( 3 ( 3 2 x ) x 2 s g n ( x ) 6 x 3 + 9 x 2 4 ) + 6 x 3 9 x 2 + 4 ) \int { \left| x \right| \left| 1-x \right| dx } =\frac { 1 }{ 24 } \left( 3\left( 3-2x \right) { x }^{ 2 }sgn\left( x \right) +sgn\left( 1-x \right) \left( 3\left( 3-2x \right) { x }^{ 2 }sgn\left( x \right) -6{ x }^{ 3 }+9{ x }^{ 2 }-4 \right) +6{ x }^{ 3 }-9{ x }^{ 2 }+4 \right) put 1 and 0 so [ 1 24 ( 3 ( 3 2 x ) x 2 s g n ( x ) + s g n ( 1 x ) ( 3 ( 3 2 x ) x 2 s g n ( x ) 6 x 3 + 9 x 2 4 ) + 6 x 3 9 x 2 + 4 ) 1 24 ( 3 ( 3 2 x ) x 2 s g n ( x ) + s g n ( 1 x ) ( 3 ( 3 2 x ) x 2 s g n ( x ) 6 x 3 + 9 x 2 4 ) + 6 x 3 9 x 2 + 4 ) ] 0 1 = 1 24 ( 3 + 6 9 + 4 ) 1 24 ( 4 + 4 ) { \left[ \frac { 1 }{ 24 } \left( 3\left( 3-2x \right) { x }^{ 2 }sgn\left( x \right) +sgn\left( 1-x \right) \left( 3\left( 3-2x \right) { x }^{ 2 }sgn\left( x \right) -6{ x }^{ 3 }+9{ x }^{ 2 }-4 \right) +6{ x }^{ 3 }-9{ x }^{ 2 }+4 \right) -\frac { 1 }{ 24 } \left( 3\left( 3-2x \right) { x }^{ 2 }sgn\left( x \right) +sgn\left( 1-x \right) \left( 3\left( 3-2x \right) { x }^{ 2 }sgn\left( x \right) -6{ x }^{ 3 }+9{ x }^{ 2 }-4 \right) +6{ x }^{ 3 }-9{ x }^{ 2 }+4 \right) \right] }_{ 0 }^{ 1 }=\frac { 1 }{ 24 } \left( 3+6-9+4 \right) -\frac { 1 }{ 24 } \left( -4+4 \right) \\ and it is 1 6 \frac { 1 }{ 6 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...