What is the limit of this function?

Calculus Level 3

lim x 0 2 7 x 9 x 3 x + 1 5 4 + cos x = ? \large\lim _{ x\to 0 } \frac { 27^{ x }-9^{ x }-3^{ x }+1 }{ \sqrt { 5 } -\sqrt { 4+\cos { x } } } = \ ?

7 5 ( ln 3 ) 2 7\sqrt{5}(\ln3)^2 8 5 ( ln 3 ) 2 8\sqrt{5}(\ln3)^2 6 5 ( ln 3 ) 2 6\sqrt{5}(\ln3)^2 9 5 ( ln 3 ) 2 9\sqrt{5}(\ln3)^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aquilino Madeira
Apr 6, 2016

lim x 0 27 x 9 x 3 x + 1 5 4 + cos ( x ) = = lim x 0 9 x ( 3 x 1 ) ( 3 x 1 ) 5 4 + cos ( x ) = lim x 0 ( 3 x 1 ) ( 9 x 1 ) 5 4 + cos ( x ) = lim x 0 ( 3 x 1 ) ( 9 x 1 ) x 2 5 4 + cos ( x ) x 2 × 5 + 4 + cos ( x ) 5 + 4 + cos ( x ) = lim x 0 3 x 1 x × 9 x 1 x 5 ( 4 + cos ( x ) ) x 2 ( 5 + 4 + cos ( x ) ) = lim x 0 ( 3 x 1 x × 9 x 1 x ) lim x 0 1 cos ( x ) x 2 ( 5 + 4 + cos ( x ) ) × 1 + cos ( x ) 1 + cos ( x ) = ln ( 3 ) × ln ( 9 ) lim x 0 1 cos 2 ( x ) x 2 ( 5 + 4 + cos ( x ) ) ( 1 + cos ( x ) ) = ln ( 3 ) × ln ( 3 ) 2 lim x 0 s e n 2 ( x ) x 2 ( 5 + 4 + cos ( x ) ) ( 1 + cos ( x ) ) = ln ( 3 ) × 2 ln ( 3 ) lim x 0 s e n 2 ( x ) x 2 × lim x 0 1 ( 5 + 4 + cos ( x ) ) ( 1 + cos ( x ) ) = 2 ln 2 ( 3 ) lim x 0 ( s e n ( x ) x ) 2 × lim x 0 1 ( 5 + 4 + cos ( x ) ) ( 1 + cos ( x ) ) = 2 ln 2 ( 3 ) ( 1 ) 2 × 1 ( 5 + 4 + cos ( 0 ) ) ( 1 + cos ( 0 ) ) = 2 ln 2 ( 3 ) 1 ( 5 + 5 ) ( 1 + 1 ) = 2 ln 2 ( 3 ) 1 ( 2 5 ) × ( 2 ) = 2 ln 2 ( 3 ) × ( 4 5 ) = 8 5 ( ln ( 3 ) ) 2 \begin{array}{l} \mathop {\lim }\limits_{x \to 0} \frac{{{{27}^x} - {9^x} - {3^x} + 1}}{{\sqrt 5 - \sqrt {4 + \cos \left( x \right)} }} = \\ = \mathop {\lim }\limits_{x \to 0} \frac{{{9^x}\left( {{3^x} - 1} \right) - \left( {{3^x} - 1} \right)}}{{\sqrt 5 - \sqrt {4 + \cos \left( x \right)} }}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {{3^x} - 1} \right)\left( {{9^x} - 1} \right)}}{{\sqrt 5 - \sqrt {4 + \cos \left( x \right)} }}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{\left( {{3^x} - 1} \right)\left( {{9^x} - 1} \right)}}{{{x^2}}}}}{{\frac{{\sqrt 5 - \sqrt {4 + \cos \left( x \right)} }}{{{x^2}}} \times \frac{{\sqrt 5 + \sqrt {4 + \cos \left( x \right)} }}{{\sqrt 5 + \sqrt {4 + \cos \left( x \right)} }}}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{{3^x} - 1}}{x} \times \frac{{{9^x} - 1}}{x}}}{{\frac{{5 - \left( {4 + \cos \left( x \right)} \right)}}{{{x^2}\left( {\sqrt 5 + \sqrt {4 + \cos \left( x \right)} } \right)}}}}\\ = \frac{{\mathop {\lim }\limits_{x \to 0} \left( {\frac{{{3^x} - 1}}{x} \times \frac{{{9^x} - 1}}{x}} \right)}}{{\mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos \left( x \right)}}{{{x^2}\left( {\sqrt 5 + \sqrt {4 + \cos \left( x \right)} } \right)}} \times \frac{{1 + \cos \left( x \right)}}{{1 + \cos \left( x \right)}}}}\\ = \frac{{\ln \left( 3 \right) \times \ln \left( 9 \right)}}{{\mathop {\lim }\limits_{x \to 0} \frac{{1 - {{\cos }^2}\left( x \right)}}{{{x^2}\left( {\sqrt 5 + \sqrt {4 + \cos \left( x \right)} } \right)\left( {1 + \cos \left( x \right)} \right)}}}}\\ = \frac{{\ln \left( 3 \right) \times \ln {{\left( 3 \right)}^2}}}{{\mathop {\lim }\limits_{x \to 0} \frac{{se{n^2}\left( x \right)}}{{{x^2}\left( {\sqrt 5 + \sqrt {4 + \cos \left( x \right)} } \right)\left( {1 + \cos \left( x \right)} \right)}}}}\\ = \frac{{\ln \left( 3 \right) \times 2\ln \left( 3 \right)}}{{\mathop {\lim }\limits_{x \to 0} \frac{{se{n^2}\left( x \right)}}{{{x^2}}} \times \mathop {\lim }\limits_{x \to 0} \frac{1}{{\left( {\sqrt 5 + \sqrt {4 + \cos \left( x \right)} } \right)\left( {1 + \cos \left( x \right)} \right)}}}}\\ = \frac{{2{{\ln }^2}\left( 3 \right)}}{{\mathop {\lim }\limits_{x \to 0} {{\left( {\frac{{sen\left( x \right)}}{x}} \right)}^2} \times \mathop {\lim }\limits_{x \to 0} \frac{1}{{\left( {\sqrt 5 + \sqrt {4 + \cos \left( x \right)} } \right)\left( {1 + \cos \left( x \right)} \right)}}}}\\ = \frac{{2{{\ln }^2}\left( 3 \right)}}{{{{\left( 1 \right)}^2} \times \frac{1}{{\left( {\sqrt 5 + \sqrt {4 + \cos \left( 0 \right)} } \right)\left( {1 + \cos \left( 0 \right)} \right)}}}}\\ = \frac{{2{{\ln }^2}\left( 3 \right)}}{{\frac{1}{{\left( {\sqrt 5 + \sqrt 5 } \right)\left( {1 + 1} \right)}}}}\\ = \frac{{2{{\ln }^2}\left( 3 \right)}}{{\frac{1}{{\left( {2\sqrt 5 } \right) \times \left( 2 \right)}}}}\\ = 2{\ln ^2}\left( 3 \right) \times \left( {4\sqrt 5 } \right)\\ = 8\sqrt 5 {\left( {\ln \left( 3 \right)} \right)^2} \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...