What is my limit?

Calculus Level 4

Given is the sequence { a n } n N \{a_n\}_{n \in \mathbb N} whose elements are recursively defined by

{ a 0 = 2 a n + 1 = 2 3 ( a n + 1 a n 2 ) , n N \begin{cases} a_0 = 2 \\ a_{n+1} = \dfrac{2}{3} \left( a_n + \dfrac{1}{a_n^2} \right), & n \in \mathbb{N} \end{cases}

What is the limit a = lim n a n \displaystyle a = \lim_{n \to \infty} a_n of this sequence?

The sequence does not converge 5 4 \dfrac{5}{4} e 1 5 e^{\frac{1}{5}} 2 π 5 \dfrac{2 \pi}{5} 2 3 \sqrt[3]{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Markus Michelmann
May 20, 2018

If the limit a a exists, it must be a fixed point of the iteration a = ! 2 3 ( a + 1 a 2 ) 1 3 a = 2 3 a 2 a 3 = 2 a = 2 3 \begin{aligned} & & a \stackrel{!}{=} \frac{2}{3} \left( a + \frac{1}{a^2}\right) \\ \Rightarrow & & \frac{1}{3} a = \frac{2}{3 a^2} \\ \Rightarrow & & a^3 = 2 \\ \Rightarrow & & a = \sqrt[3]{2} \end{aligned} Now all we have to do is check if the sequence is convergent. Suppose, 2 3 < a n 2 \sqrt[3]{2} < a_n \leq 2 . Then it follows a n + 1 a n = 2 3 ( a n + 1 a n 2 ) a n = 1 3 2 a n 3 a n 2 < 0 a n + 1 2 3 = 2 3 ( a n + 1 a n 2 ) 2 3 = 2 3 a n 2 ( a n 3 3 2 2 / 3 a n 2 + 1 ) = 2 3 a n 2 ( a n + 1 2 2 / 3 ) ( a n 2 3 ) 2 > 0 \begin{aligned} a_{n+1} - a_n &= \frac{2}{3} \left( a_n + \frac{1}{a_n^2} \right) - a_n \\ &= \frac{1}{3} \frac{2 - a_n^3}{a_n^2} \\ &< 0 \\ a_{n+1} - \sqrt[3]{2} &= \frac{2}{3} \left( a_n + \frac{1}{a_n^2} \right) - \sqrt[3]{2} \\ &= \frac{2}{3 a_n^2} \left( a_n^3 - \frac{3}{2^{2/3}} a_n^2 + 1 \right) \\ &=\frac{2}{3 a_n^2} \left( a_n + \frac{1}{2^{2/3}} \right) \left( a_n - \sqrt[3]{2}\right)^2 \\ &> 0 \end{aligned} so that 2 3 < a n + 1 < a n 2 \sqrt[3]{2} < a_{n+1} < a_n \leq 2 . By proof by induction it follows, that the sequence is bounded and monotonically decreasing, so that it is also convergent. QED.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...