What is now this limit doing here?

Calculus Level 4

Find lim x π 2 ( sin x cos x ) tan x \large {\lim_{x \to \frac{\pi}{2}} \left(\sin x - \cos x\right)^{\tan x}} The limit above has a closed form. Find the value of this closed form.

For example, submit your answer to 8 decimal places.


The answer is 0.36787944.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

lim x π 2 ( sin x cos x ) tan x = lim x π 2 sin x ( 1 1 tan x ) tan x Let n = tan x = lim x π 2 sin x lim n ( 1 1 n ) n = 1 1 e 0.36787944 \begin{aligned} \lim_{x \to \frac{\pi}{2}} \left(\sin x - \cos x \right)^{\tan x} & = \lim_{x \to \frac{\pi}{2}} \sin x \left(1 - \frac{1}{\color{#3D99F6}{\tan x}} \right)^{\color{#3D99F6}{\tan x}} \quad \quad \small \color{#3D99F6}{\text{Let } n = \tan x}\\ & = \lim_{x \to \frac{\pi}{2}} \sin x \cdot{} \lim_{\color{#3D99F6}{n} \to \infty} \left(1 - \frac{1}{\color{#3D99F6}{n}} \right)^{\color{#3D99F6}{n}} \\ & = 1 \cdot{} \frac{1}{e} \approx \boxed{0.36787944} \end{aligned}

wow!, I loved this wonderful "no-standard" approach (solution). Thank you, sir (+1) \uparrow .

Guillermo Templado - 5 years, 2 months ago

汶良 林 - 5 years, 2 months ago

Log in to reply

hm, I understand you, It still need to be proved lim x π 2 ( sin x ) tan x = 1 \displaystyle \lim_{x \to \frac{\pi}{2}} (\sin x) ^{\tan x} = 1 ..... Good reply.....

Guillermo Templado - 5 years, 2 months ago

By inserting the limit, we can clearly see that the expression takes the form 1 { 1 }^{ \infty } , which can be easily solved by using the exponential conversion. So, the following limit can be written as:

e lim x π 2 ( sin x cos x 1 ) tan x { e }^{ \lim _{ x\rightarrow \frac { \pi }{ 2 } }{ (\sin { x-\cos { x } -1) } \tan { x } } }

Which can be further simplified into

e lim x π 2 ( sin x cos x 1 ) cot x { e }^{ \lim _{ x\rightarrow \frac { \pi }{ 2 } }{ \frac { (\sin { x-\cos { x } -1) } }{ \cot { x } } } }

Now, as we can clearly see that the limit in the exponent tends to a 0 0 \frac {0} {0} form, so we'll use the L'Hôpital's Rule to simplify it further.

Differentiating the numerator and denominator in the power, with respect to x x , we get:

e lim x π 2 cos x + sin x csc 2 x { e }^{ \lim _{ x\rightarrow \frac { \pi }{ 2 } }{ \frac { \cos { x } +\sin { x } }{ -\csc ^{ 2 }{ x } } } }

Now, inserting the limit into the formed expression:

e 0 + 1 1 = e 1 = 0.36787944 { e }^{ \frac { 0+1 }{ -1 } }={ e }^{ -1 }=0.36787944

Cheers! :)

Thank you for your solution. (+1) \uparrow

Guillermo Templado - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...