A piece of π \pi

Calculus Level 5

lim n 2 n + 5 2 3 3 + 3 T n \lim_{n \to \infty} 2^{n+\frac{5}{2}} \sqrt{3-\sqrt{3+3T_{n}}}

Define a sequence T T with n th n^\text{th} term T n T_{n} such that T 0 = 0 T_{0} = 0 and T n = 2 + T n 1 T_{n} = \sqrt{2+T_{n-1}} . Then evaluate the limit above.

6 π 6\pi 2 π 2\pi π 2 \frac{\pi}{2} π 2 \pi^{2} π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arturo Presa
Feb 12, 2016

Since 2 cos π 2 = 0 2\cos\frac{\pi}{2}=0 and 2 cos π 2 n + 1 = 2 + 2 cos π 2 n , 2\cos \frac{\pi}{2^{n+1}}=\sqrt{2+2\cos \frac{\pi}{2^{n}}}, then T n = 2 cos π 2 n + 1 . T_n= 2\cos \frac{\pi}{2^{n+1}}. Denoting the limit of the question by L , L, we have that L = lim n 2 n + 5 2 3 3 + 6 cos π 2 n + 1 = lim n 2 n + 5 2 3 3 + 6 cos π 2 n + 1 3 + 3 + 6 cos π 2 n + 1 3 + 3 + 6 cos π 2 n + 1 = lim n 2 n + 5 2 6 6 cos π 2 n + 1 lim n 1 3 + 3 + 6 cos π 2 n + 1 = lim n 2 n + 5 2 6 6 cos π 2 n + 1 1 6 = lim n 2 3 2 π 1 cos π 2 n + 1 ( π 2 n + 1 ) 2 = 2 π \begin{aligned} L&=\lim_{n \to \infty} 2^{n+\frac{5}{2}} \sqrt{3-\sqrt{3+6\cos \frac{\pi}{2^{n+1}}}}\\ &=\lim_{n \to \infty} 2^{n+\frac{5}{2}} \sqrt{3-\sqrt{3+6\cos \frac{\pi}{2^{n+1}}}}\cdot\frac{\sqrt{3+\sqrt{3+6\cos \frac{\pi}{2^{n+1}}}}}{\sqrt{3+\sqrt{3+6\cos \frac{\pi}{2^{n+1}}}}}\\ &=\lim_{n \to \infty} 2^{n+\frac{5}{2}} \sqrt{6-6\cos \frac{\pi}{2^{n+1}}}\cdot\lim_{n \to \infty} \frac{1}{\sqrt{3+\sqrt{3+6\cos \frac{\pi}{2^{n+1}}}}}\\ &= \lim_{n \to \infty} 2^{n+\frac{5}{2}} \sqrt{6-6\cos \frac{\pi}{2^{n+1}}} \cdot \frac{1}{\sqrt{6}}\\ &=\lim_{n \to \infty} 2^{\frac{3}{2}}\pi \sqrt{\frac{1-\cos \frac{\pi}{2^{n+1}}}{(\frac{\pi}{2^{n+1}})^2}}\\ &=\boxed{ 2\pi }\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...