What is r = 1 n r 7 \sum _{r=1}^n r^7 ?

Calculus Level 4

Let M n = r = 1 n r 4 , N n = r = 1 n r 2 \displaystyle M_n= \sum_{r=1}^n r^4 , N_n= \sum_{r=1}^n r^2 and Y n = r = 1 n r 7 \displaystyle Y_n= \sum_{r=1}^n r^7 . If lim n M n N n Y n \displaystyle \lim_{n\to\infty} \dfrac{M_n N_n}{Y_n} can be expressed as A B \dfrac AB , where A A and B B are coprime positive integers.

Find A + B A+B .


You may want to read the wiki page: Method of undetermined coefficients .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

M e t h o d 1 \left| Method\quad 1 \right|

lim n ( r = 1 n r 4 ) ( r = 1 n r 2 ) ( r = 1 n r 7 ) \lim _{ n\rightarrow \infty }{ \frac { \left( \sum _{ r=1 }^{ n }{ { r }^{ 4 } } \right) \left( \sum _{ r=1 }^{ n }{ { r }^{ 2 } } \right) }{ \left( \sum _{ r=1 }^{ n }{ { r }^{ 7 } } \right) } }

= lim n ( r = 1 n ( r n ) 4 ) ( r = 1 n ( r n ) 2 ) ( r = 1 n ( r n ) 7 ) n 6 n 7 =\lim _{ n\rightarrow \infty }{ \frac { \left( \sum _{ r=1 }^{ n }{ { \left( \frac { r }{ n } \right) }^{ 4 } } \right) \left( \sum _{ r=1 }^{ n }{ { \left( \frac { r }{ n } \right) }^{ 2 } } \right) }{ \left( \sum _{ r=1 }^{ n }{ { \left( \frac { r }{ n } \right) }^{ 7 } } \right) } } \frac { { n }^{ 6 } }{ { n }^{ 7 } }

= lim n 1 n ( r = 1 n ( r n ) 4 ) ( r = 1 n ( r n ) 2 ) ( r = 1 n ( r n ) 7 ) =\lim _{ n\rightarrow \infty }{ \frac { 1 }{ n } \frac { \left( \sum _{ r=1 }^{ n }{ { \left( \frac { r }{ n } \right) }^{ 4 } } \right) \left( \sum _{ r=1 }^{ n }{ { \left( \frac { r }{ n } \right) }^{ 2 } } \right) }{ \left( \sum _{ r=1 }^{ n }{ { \left( \frac { r }{ n } \right) }^{ 7 } } \right) } }

= ( 0 1 x 4 d x ) ( 0 1 x 2 d x ) ( 0 1 x 7 d x ) =\frac { \left( \int _{ 0 }^{ 1 }{ { x }^{ 4 }dx } \right) \left( \int _{ 0 }^{ 1 }{ { x }^{ 2 }dx } \right) }{ \left( \int _{ 0 }^{ 1 }{ { x }^{ 7 }dx } \right) }

= ( 1 5 ) ( 1 3 ) ( 1 8 ) = 8 15 = A B =\frac { \left( \frac { 1 }{ 5 } \right) \left( \frac { 1 }{ 3 } \right) }{ \left( \frac { 1 }{ 8 } \right) } =\frac { 8 }{ 15 } =\frac { A }{ B }

Now A+B=23

M e t h o d 2 \left| Method\quad 2 \right|

r = 1 n r n \sum _{ r=1 }^{ n }{ { r }^{ n } } Is a Polynomial With Leading Coefficient 1 n + 1 \frac { 1 }{ n+1 } And Of Degree n + 1 n+1

lim n ( r = 1 n r 4 ) ( r = 1 n r 2 ) ( r = 1 n r 7 ) \lim _{ n\rightarrow \infty }{ \frac { \left( \sum _{ r=1 }^{ n }{ { r }^{ 4 } } \right) \left( \sum _{ r=1 }^{ n }{ { r }^{ 2 } } \right) }{ \left( \sum _{ r=1 }^{ n }{ { r }^{ 7 } } \right) } }

= lim n ( n 5 5 + f ( x ) ) ( n 2 2 + g ( x ) ) ( n 8 8 + h ( x ) ) =\lim _{ n\rightarrow \infty }{ \frac { \left( \frac { { n }^{ 5 } }{ 5 } +f\left( x \right) \right) \left( \frac { { n }^{ 2 } }{ 2 } +g\left( x \right) \right) }{ \left( \frac { { n }^{ 8 } }{ 8 } +h\left( x \right) \right) } }

f ( x ) I s a P o l y n o m i a l O f d e g r e e 4 g ( x ) I s a P o l y n o m i a l O f d e g r e e 2 h ( x ) I s a P o l y n o m i a l O f d e g r e e 7 f\left( x \right) \quad Is\quad a\quad Polynomial\quad Of\quad degree\quad 4\\ g\left( x \right) \quad Is\quad a\quad Polynomial\quad Of\quad degree\quad 2\\ h\left( x \right) \quad Is\quad a\quad Polynomial\quad Of\quad degree\quad 7\\

= lim n ( 1 5 + f ( x ) n 5 ) ( 1 3 + g ( x ) n 3 ) ( 1 8 + h ( x ) n 8 ) = ( 1 5 ) ( 1 3 ) ( 1 8 ) = 8 15 =\lim _{ n\rightarrow \infty }{ \frac { \left( \frac { 1 }{ 5 } +\frac { f\left( x \right) }{ { n }^{ 5 } } \right) \left( \frac { 1 }{ 3 } +\frac { g\left( x \right) }{ { n }^{ 3 } } \right) }{ \left( \frac { 1 }{ 8 } +\frac { h\left( x \right) }{ { n }^{ 8 } } \right) } } \\ =\frac { \left( \frac { 1 }{ 5 } \right) \left( \frac { 1 }{ 3 } \right) }{ \left( \frac { 1 }{ 8 } \right) } =\frac { 8 }{ 15 }

I hope You guys Like my Approach.

Moderator note:

Good first approach.

For method 2, you should explain why " \sum is a polynomial with leading coefficient 1 n + 1 \frac{1}{n+1} ". At least mention that this is well-known / can be calculated in the following way / state the summation explicitly.

Note: In general, avoid making people jump through hoops in order to enter the answer. IE After finding that A + B = 23 A+B = 23 , they shouldn't then be asked to run a mile, touch their finger to their noise, find which prime number it is, square the value, multiply it by 2, etc.

I've udpated the answer to 23.

Calvin Lin Staff - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...