What is the limit?

Calculus Level 5

lim n ( 0 1 1 1 + x n d x ) n = ? \large \displaystyle \lim_{n\to\infty} \left( \int_0^1 \frac1{1+x^n} \, dx \right )^n = \ ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aman Rajput
May 20, 2021

By tancelocation -

( 0 1 1 1 + x n d x ) n = ( 1 0 1 x n 1 + x n d x = : J n ) n \begin{aligned}\left(\int_0^1 \frac{1}{1+x^n} dx\right)^n & = & \left(1- \underbrace{\int_0^1 \frac{x^n}{1+x^n} dx}_{=:J_n}\right)^n \end{aligned}

Using integration by parts you get J n = 1 n 0 1 x n x n 1 1 + x n d x = 1 n ( ln 2 0 1 ln ( 1 + x n ) d x = : I n ) J_n = \frac 1n\int_0^1 x\frac{nx^{n-1}}{1+x^n} dx = \frac 1n\left(\ln 2 - \underbrace{\int_0^1 \ln (1+x^n) dx}_{=:I_n}\right)

Now, DCT (or just squeezing) gives immediately lim n I n = 0 \lim_{n\to \infty }I_n = 0

All together

( 0 1 1 1 + x n d x ) n = ( ( 1 ln 2 I n n ) n ln 2 I n ) ln 2 I n n ( e 1 ) ln 2 = 1 2 \begin{aligned}\left(\int_0^1 \frac{1}{1+x^n} dx\right)^n & = & \left(\left(1-\frac{\ln 2 - I_n}n\right)^{\frac{n}{\ln 2 - I_n}}\right)^{\ln 2 - I_n} \\ & \stackrel{n\to\infty}{\longrightarrow} & \left(e^{-1}\right)^{\ln2} = \frac 12 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...