This problem’s question: What is the maximal Euclidean distance between any two of these nine points?
The points are eight-dimensional points. The Euclidean distance is nonetheless defined.
⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 3 2 − 1 2 1 − 1 2 1 − 1 2 1 − 1 2 1 − 1 2 1 − 1 2 1 − 1 2 1 − 1 2 1 0 4 7 − 4 7 1 − 4 7 1 − 4 7 1 − 4 7 1 − 4 7 1 − 4 7 1 − 4 7 1 0 0 7 3 − 2 2 1 1 − 2 2 1 1 − 2 2 1 1 − 2 2 1 1 − 2 2 1 1 − 2 2 1 1 0 0 0 2 3 5 − 2 1 5 1 − 2 1 5 1 − 2 1 5 1 − 2 1 5 1 − 2 1 5 1 0 0 0 0 5 2 − 2 1 0 1 − 2 1 0 1 − 2 1 0 1 − 2 1 0 1 0 0 0 0 0 2 2 3 − 2 6 1 − 2 6 1 − 2 6 1 0 0 0 0 0 0 3 1 − 2 3 1 − 2 3 1 0 0 0 0 0 0 0 2 1 − 2 1 ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞
All 36 unique distances were computed. The distance is the same no matter which point is listed first in the computation; therefore, the number of distances to be computed is halved. If you recognize what these points are, then the problem becomes quite simple.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Wikipedia 8-simplex coordinates . Actually, I computed the coordinates myself. The Wikipedia set is comparable.
If you can read Wolfram Mathematica code:
Table[ m=ConstantArray[0,{n+1,n}]; f=-(1/n); m[[1,1]]=1; m[[2;;n,1]]=f; Do[ m[[j,j]]=Sqrt[1-m[[j,All]].m[[j,All]]]; m[[j+1,j]]=q; m[[j+1,j]]=First[q/.Solve[m[[j]].m[[j+1]]==f]]; m[[j+1;;n,j]]=m[[j+1,j]];, {j,2,n} ]; m[[n+1]]=m[[n]]; m[[n+1,n]]=-m[[n+1,n]]; m, {n,8,8} ]