What is the maximum of a b n ab^n ?

Algebra Level 3

For two non-negative real numbers a a and b b and a fixed natural number n n satisfying n a + b = na+b= constant , what is the maximum value of a b n ab^n ?

a n + 1 n 2 n a^{n+1}n^{2n} a 2 n + 1 n n a^{2n+1}n^n a n 2 n + 1 an^{2n+1} a 2 n n n + 1 a^{2n}n^{n+1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 23, 2019

By Algebra: By AM-GM inequality ,

n a + b n + b n + b n + + b n n terms ( n + 1 ) n a b n n n n + 1 n a + b ( n + 1 ) a b n n n 1 n + 1 Raise to the power of n + 1 on both sides and swap sides. ( n + 1 ) n + 1 a b n n n 1 ( n a + b ) n + 1 Equality occurs when n a = b n or b = a n 2 a n + 1 n n + 1 ( n + 1 ) n + 1 a b n a n + 1 n 2 n \begin{aligned} na + \underbrace{\frac bn + \frac bn + \frac bn + \cdots + \frac bn}_{n \text{ terms}} & \ge (n+1)\sqrt[n+1]{\frac {nab^n}{n^n}} \\ na + b & \ge (n+1)\sqrt[n+1]{\frac {ab^n}{n^{n-1}}} & \small \color{#3D99F6} \text{Raise to the power of }n+1 \text{ on both sides and swap sides.} \\ \frac {(n+1)^{n+1}ab^n}{n^{n-1}} & \le (na+b)^{n+1} & \small \color{#3D99F6} \text{Equality occurs when }na = \frac bn \text{ or } b = an^2 \\ & \le a^{n+1}n^{n+1}(n+1)^{n+1} \\ \implies ab^n & \le \boxed{a^{n+1}n^{2n}} \end{aligned}


By Calculus: Let n a + b = k na+b= k , where k k is a constant. Then

b = k a n f ( a ) = a b n Differentiate both sides w.r.t. a f ( a ) = b n + a n b n 1 d b d a Note that d b d a = n = b n a n 2 b n 1 Putting f ( a ) = 0 b = a n 2 a = b n 2 For b 0 f ( a ) = n 2 b n 1 n 2 b n 1 + a n 3 ( n 1 ) b n 2 = n 2 b n 2 ( a n 2 b ) f ( b n 2 ) = n ( 1 2 n ) b n 1 < 0 For n N max ( a b n ) = f ( b n 2 ) = a ( a n 2 ) n = a n + 1 n 2 n \begin{aligned} b & = k - an \\ \implies f(a) & = ab^n & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }a \\ f'(a) & = b^n + anb^{n-1}\cdot \frac {db}{da} & \small \color{#3D99F6} \text{Note that }\frac {db}{da} = - n \\ & = b^n - an^2b^{n-1} & \small \color{#3D99F6} \text{Putting }f'(a) = 0 \\ \implies b & = an^2 \implies a = \frac b{n^2} & \small \color{#3D99F6} \text{For }b \ne 0 \\ f''(a) & = -n^2b^{n-1} - n^2b^{n-1} + an^3(n-1)b^{n-2} \\ & = n^2b^{n-2}(an - 2b) \\ f'' \left(\frac b{n^2} \right) & = n(1-2n)b^{n-1} < 0 & \small \color{#3D99F6} \text{For }n \in \mathbb N \\ \implies \max (ab^n) & = f \left(\frac b{n^2} \right) = a(an^2)^n = \boxed{a^{n+1}n^{2n}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...