An algebra problem by Aly Ahmed

Algebra Level pending

x and y are acute angle

find min of
cos^3x/cosy + sin^3x/siny -sec(x-y)


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

cos ( α β ) 1 1 cos α cos β sin α sin β 2 sin α ( 1 cos α cos β ) 2 sin 2 α sin β 2 sin α sin β sin ( 2 α β ) \cos (α-β)\leq 1\implies 1-\cos α\cos β\geq \sin α\sin β\implies 2\sin α(1-\cos α\cos β)\geq 2 \sin^2 α\sin β\implies 2\sin α-\sin β\geq \sin (2α-β)

Substituting α α by 2 x 2x and β β by 2 y 2y we get 2 sin 2 x sin 2 y sin ( 4 x 2 y ) 2\sin 2x-\sin 2y\geq \sin (4x-2y)

3 ( sin 2 x + sin 2 y ) sin ( 4 x 2 y ) sin 2 x 4 sin 2 y \implies 3(\sin 2x+\sin 2y)-\sin (4x-2y)-\sin 2x\geq 4\sin 2y

cos ( x y ) ( 3 sin ( x + y ) sin ( 3 x y ) ) 2 sin 2 y \implies \cos (x-y) \left (3\sin (x+y)-\sin (3x-y)\right )\geq 2\sin 2y

4 cos ( x y ) ( sin y cos 3 x + cos y sin 3 x ) 2 sin 2 y \implies 4\cos (x-y) (\sin y\cos^3 x+\cos y\sin^3 x) \geq 2\sin 2y

cos ( x y ) ( cos 3 x cos y + sin 3 x sin y ) 1 \implies \cos (x-y) \left (\dfrac {\cos^3 x}{\cos y}+\dfrac {\sin^3 x}{\sin y}\right )\geq 1

cos 3 x cos y + sin 3 x sin y sec ( x y ) \implies \dfrac {\cos^3 x}{\cos y}+\dfrac {\sin^3 x}{\sin y}\geq \sec (x-y)

cos 3 x cos y + sin 3 x sin y sec ( x y ) 0 \implies \dfrac {\cos^3 x}{\cos y}+\dfrac {\sin^3 x}{\sin y}-\sec (x-y) \geq \boxed 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...