What is the minimum of the following expression?

Algebra Level 2

If x 1 , x 2 , x 3 , , x 2018 x_1,x_2,x_3,\dots,x_{2018} are positive integers, then what is the minimum of the value of the following expression: ( x 1 + x 2 + x 3 + + x 2018 ) ( 1 x 1 + 1 x 2 + 1 x 3 + + 1 x 2018 ) \Big(x_1+x_2+x_3+\dots+x_{2018}\Big)\Big(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\dots+\frac{1}{x_{2018}}\Big)

2036 2036 2018 2018 1009 1009 ( 2019 ) 2 (2019)^2 ( 2018 ) 2 (2018)^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hana Wehbi
Sep 29, 2018

If x 1 , x 2 , x 3 , , x 2018 x_1,x_2,x_3,\dots,x_{2018} are positive integers, then the minimum of the value of the following expression by Holder Inequality is: ( x 1 + x 2 + x 3 + + x 2018 ) ( 1 x 1 + 1 x 2 + 1 x 3 + + 1 x 2018 ) ( 1 + 1 + + 1 2018 ) ( 1 + 1 + + 1 2018 ) = ( 2018 ) 2 \Big(x_1+x_2+x_3+\dots+x_{2018}\Big)\Big(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\dots+\frac{1}{x_{2018}}\Big)\ge (\underbrace{1+1+\dots+1}_{2018})(\underbrace{1+1+\dots+1}_{2018})=(2018)^2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...