Minimum Value of Expression

Algebra Level 2

For positive reals x x , y y , and z z , what is the minimum value of the following expression?

( x + y + z ) ( 1 x + 1 y + 1 z ) (x+y+z)\left(\frac { 1 }{ x } +\frac { 1 }{ y } +\frac { 1 }{ z } \right)


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Jordan Cahn
Sep 28, 2018

Let the A = x + y + z 3 A=\frac{x+y+z}{3} be the arithmetic mean of x , y , z x,y,z and let H = 3 1 x + 1 y + 1 z H=\frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}} be the harmonic mean. Then ( x + y + z ) ( 1 x + 1 y + 1 z ) = 9 A H (x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) = 9\frac{A}{H} For positive real numbers, A H A\geq H with equality holding precisely when x = y = z x=y=z ( see here for a proof ). Since A H \frac{A}{H} will be minimized when equality holds, ( x + y + z ) ( 1 x + 1 y + 1 z ) = 3 x ( 3 x ) = 9 (x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) = 3x\left(\frac{3}{x}\right) = \boxed{9}

Chew-Seong Cheong
Sep 28, 2018

Using Hölder's inequality as follows:

( x + y + z ) 1 2 ( 1 x + 1 y + 1 z ) 1 2 1 + 1 + 1 Squaring both sides ( x + y + z ) ( 1 x + 1 y + 1 z ) ( 1 + 1 + 1 ) 2 = 9 \begin{aligned} (x+y+z)^\frac 12\left(\frac 1x+\frac 1y + \frac 1z\right)^\frac 12 & \ge 1 + 1 + 1 & \small \color{#3D99F6} \text{Squaring both sides} \\ (x+y+z)\left(\frac 1x+\frac 1y + \frac 1z\right) & \ge (1 + 1 + 1)^2 = \boxed 9 \end{aligned}

Bunhiacopsky can be used too

Vũ An - 2 years, 7 months ago
Raymond Chan
Oct 2, 2018

By AM-GM inequality, we have ( x + y + z ) ( 1 x + 1 y + 1 z ) 3 ( x y z ) 1 3 × 3 ( 1 x y z ) 1 3 = 9 (x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}) \ge 3(xyz)^{\frac{1}{3}} \times 3(\frac{1}{xyz})^{\frac{1}{3}}=9 The equality holds iff x = y = z x=y=z

Faisal Mujawar
Dec 21, 2018

To get the smallest numbers possible on both the LHS and RHS, we need to make x = y = z. The miraculous thing about doing this is that no matter what value you substitute for x, y or z, you always get 9. Here is the proof:

(x + y + z)(1/x +1/y + 1/z)

1 + x/y + x/z + y/x + 1 + y/z + z/x + z/y + 1

Since x = y = z, all terms that contain these variables simplify to 1.

Therefore, we get 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 9

I discovered that x = y = z makes the expression equal to 9. Why is that x = y = z guarantees a minimum?

YuJin Kim - 2 years, 3 months ago
Roberto Gomide
Sep 28, 2018

Cauchy Schwarz inequality

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...