This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I will show that for any convex quadrilateral the following equations holds true:
sin ( T − A ) sin ( A ) sin ( T + B ) sin ( B ) sin ( T − C ) sin ( C ) sin ( T + D ) sin ( D ) = 1
where
T − A = ∠ A B D 1 8 0 − ( T + B ) = ∠ B C A T − C = ∠ C D B 1 8 0 − ( T + D ) = ∠ C A D
sin ( T − A ) sin ( A ) sin ( 1 8 0 − T − B ) sin ( B ) sin ( T − C ) sin ( C ) sin ( 1 8 0 − T − D ) sin ( D ) =
= sin ( T − A ) sin ( A ) sin ( T + B ) sin ( B ) sin ( T − C ) sin ( C ) sin ( T + D ) sin ( D ) =
(Applying sine law for all inner triangles we get)
= a b b c c d d a = 1
In our case sin ( 1 6 ) sin ( 5 8 ) sin ( 5 8 ) sin ( 4 8 ) sin ( 4 4 ) sin ( 3 0 ) sin ( 7 4 + x ) sin ( x ) = 1
This gives the result of x = 3 0
Note: This is sort of a variation on the Trigonometric Form of Ceva's Theorem for triangles.