What is the missing angle?

Geometry Level 4

What is the missing angle?


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Maria Kozlowska
Feb 14, 2021

I will show that for any convex quadrilateral the following equations holds true:

sin ( A ) sin ( T A ) sin ( B ) sin ( T + B ) sin ( C ) sin ( T C ) sin ( D ) sin ( T + D ) = 1 \dfrac{\sin(A)}{\sin(T-A)} \dfrac{\sin(B)}{\sin(T+B)} \dfrac{\sin(C)}{\sin(T-C)} \dfrac{\sin(D)}{\sin(T+D)} =1

where

T A = A B D T-A=\angle ABD 180 ( T + B ) = B C A 180-( T+B)=\angle BCA T C = C D B T-C=\angle CDB 180 ( T + D ) = C A D 180-(T+D)=\angle CAD

sin ( A ) sin ( T A ) sin ( B ) sin ( 180 T B ) sin ( C ) sin ( T C ) sin ( D ) sin ( 180 T D ) = \dfrac{\sin(A)}{\sin(T-A)} \dfrac{\sin(B)}{\sin(180-T-B)} \dfrac{\sin(C)}{\sin(T-C)} \dfrac{\sin(D)}{\sin(180-T-D)} =

= sin ( A ) sin ( T A ) sin ( B ) sin ( T + B ) sin ( C ) sin ( T C ) sin ( D ) sin ( T + D ) = = \dfrac{\sin(A)}{\sin(T-A)} \dfrac{\sin(B)}{\sin(T+B)} \dfrac{\sin(C)}{\sin(T-C)} \dfrac{\sin(D)}{\sin(T+D)} =

(Applying sine law for all inner triangles we get)

= b a c b d c a d = 1 = \dfrac{b}{a} \dfrac{c}{b} \dfrac{d}{c} \dfrac{a}{d} = 1

In our case sin ( 58 ) sin ( 16 ) sin ( 48 ) sin ( 58 ) sin ( 30 ) sin ( 44 ) sin ( x ) sin ( 74 + x ) = 1 \dfrac{\sin(58)}{\sin(16)} \dfrac{\sin(48)}{\sin(58)} \dfrac{\sin(30)}{\sin(44)} \dfrac{\sin(x)}{\sin(74+x)} =1

This gives the result of x = 30 x=30

Note: This is sort of a variation on the Trigonometric Form of Ceva's Theorem for triangles.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...