What is the Radius?

Geometry Level 3

In square A B C D ABCD with side length a a , E E is a midpoint of B C \overline{BC} and diagonal A C \overline{AC} , E D \overline{ED} and A D \overline{AD} is tangent to circle O O with radius r r at J , I J,I and F F respectively.

If r a = α β + α α + λ \dfrac{r}{a} = \dfrac{\alpha}{\beta + \alpha\sqrt{\alpha} + \sqrt{\lambda}} , where α , β \alpha,\beta and λ \lambda are coprime positive integers, find α + β + λ \alpha + \beta + \lambda .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Mar 2, 2021

For A C : y = x \overline{AC}: y = x and m E D = 2 y = 2 x + 2 a x = y = 2 a 3 m_{\overline{ED}} = -2 \implies y = -2x + 2a \implies x = y = \dfrac{2a}{3}

G ( 2 a 3 , 2 a 3 ) A G = 2 2 3 a \implies G(\dfrac{2a}{3},\dfrac{2a}{3}) \implies \overline{AG} = \dfrac{2\sqrt{2}}{3}a and G D = 5 3 a \overline{GD} = \dfrac{\sqrt{5}}{3}a

A A G D = 1 2 ( a ) ( 2 a 3 ) = a 2 3 = \implies A_{\triangle{AGD}} = \dfrac{1}{2}(a)(\dfrac{2a}{3}) = \dfrac{a^2}{3} = a r 2 ( 3 + 2 2 + 5 3 ) \dfrac{ar}{2}(\dfrac{3 + 2\sqrt{2} + \sqrt{5}}{3}) \implies

2 a 2 ( 3 + 2 2 + 5 ) a r = 0 a ( 2 a ( 3 + 2 2 + 5 ) r ) = 0 2a^2 - (3 + 2\sqrt{2} + \sqrt{5})ar = 0 \implies a(2a - (3 + 2\sqrt{2} + \sqrt{5})r) = 0 and

a 0 r = 2 a 3 + 2 2 + 5 r a = 2 3 + 2 2 + 5 = α β + α α + λ a \neq 0 \implies r = \dfrac{2a}{3 + 2\sqrt{2} + \sqrt{5}} \implies \dfrac{r}{a} = \dfrac{2}{3 + 2\sqrt{2} + \sqrt{5}} = \dfrac{\alpha}{\beta + \alpha\sqrt{\alpha} + \sqrt{\lambda}}

α + β + λ = 10 \implies \alpha + \beta + \lambda = \boxed{10} .

We can find inradius of a triangle without finding the area and perimeter of the triangle. Check out this solution.

Let a = 1 a=1 , C A D = α \angle CAD = \alpha , and E D A = β \angle EDA = \beta . Note that A O AO bisects C A D \angle CAD and O D OD bisects E D A \angle EDA . Then we have:

A F + F D = A D O F cot O A F + O F cot O D F = A D r cot α 2 + r cot β 2 = 1 Using tan θ 2 = 1 cos θ sin θ (see note). r 2 1 + 2 r 5 1 = 1 r = 1 1 2 1 + 2 5 1 Since a = 1 r a = 1 2 + 1 2 1 + 2 ( 5 + 1 ) 5 1 = 1 2 + 1 + 5 + 1 2 = 2 3 + 2 2 + 5 \begin{aligned} AF + FD & = AD \\ OF \cdot \cot \angle OAF + OF \cot ODF & = AD \\ r \cot \frac \alpha 2 + r \cdot \cot \frac \beta 2 & = 1 & \small \blue{\text{Using }\tan \frac \theta 2 = \frac {1-\cos \theta}{\sin \theta} \text{ (see note).}} \\ \frac r{\sqrt 2 -1} + \frac {2r}{\sqrt 5 -1} & = 1 \\ r & = \frac 1{\frac 1{\sqrt 2 - 1} + \frac 2{\sqrt 5 -1}} & \small \blue{\text{Since }a = 1} \\ \implies \frac ra & = \frac 1{\frac {\sqrt 2 + 1}{2-1} + \frac {2(\sqrt 5 +1)}{5-1}} \\ & = \frac 1{\sqrt 2 + 1 + \frac {\sqrt 5 +1}2} \\ & = \frac 2{3+2\sqrt 2 + \sqrt 5} \end{aligned}

Therefore the required answer is 3 + 2 + 5 = 10 3+2+5 = \boxed{10} .


Note:

  • We note that tan α = 1 sin α = cos α = 1 2 tan α 2 = 1 cos α sin α = 2 1 \tan \alpha = 1 \implies \sin \alpha = \cos \alpha = \dfrac 1{\sqrt 2} \implies \tan \dfrac \alpha 2 = \dfrac {1-\cos \alpha}{\sin \alpha} = \sqrt 2 - 1 .
  • Similarly, tan β = 2 sin β = 2 5 \tan \beta = 2 \implies \sin \beta = \dfrac 2{\sqrt 5} , cos α = 1 5 tan β 2 = 1 cos β sin β = 5 1 2 \cos \alpha = \dfrac 1{\sqrt 5} \implies \tan \dfrac \beta 2 = \dfrac {1-\cos \beta}{\sin \beta} = \dfrac{\sqrt 5 - 1}2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...