If the slope of the polar curve r = 1 + sin ( θ ) at θ = 4 π can be expressed as − a − b for positive integers a and b , then find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Exactly! Done this way!
In general, with r = f ( θ ) , we have that x = r cos ( θ ) and y = r sin ( θ ) and thus
d x d y = d θ d x d θ d y = d θ d r cos ( θ ) − r sin ( θ ) d θ d r sin ( θ ) + r cos ( θ ) .
Now in this case r = 1 + sin ( θ ) ⟹ d θ d r = cos ( θ ) , and thus
d x d y = cos 2 ( θ ) − ( 1 + sin ( θ ) ) sin ( θ ) cos ( θ ) sin ( θ ) + ( 1 + sin ( θ ) ) cos ( θ ) = ( cos 2 ( θ ) − sin 2 ( θ ) ) − sin ( θ ) 2 sin ( θ ) cos ( θ ) + cos ( θ ) = cos ( 2 θ ) − sin ( θ ) sin ( 2 θ ) + cos ( θ ) .
So the slope at θ = 4 θ is d x d y = 0 − 2 2 1 + 2 2 = − 2 ( 2 + 2 ) = − 2 − 1 , and so a + b = 2 + 1 = 3 .
Problem Loading...
Note Loading...
Set Loading...
{ x = r cos θ = cos θ + sin θ cos θ y = r sin θ = sin θ + sin 2 θ since r = 1 + sin θ
⎩ ⎪ ⎨ ⎪ ⎧ d θ d x = − sin θ + cos 2 θ d θ d y = cos θ + sin 2 θ
⟹ d x d y d x d y ∣ ∣ ∣ ∣ θ = 4 π = d θ d x d θ d y = − sin θ + cos 2 θ cos θ + sin 2 θ = − sin 4 π + cos 2 π cos 4 π + sin 2 π = − 2 1 + 0 2 1 + 1 = − 1 − 2
⟹ a + b = 2 + 1 = 3