What is the stopping potential?

Chemistry Level 2

If an electron has a speed of 1.0 × 1 0 4 m / s 1.0 \times 10^{4} m/s , what potential difference must be applied to stop the electron?

2.8 × 1 0 4 V 2.8 \times 10^{-4} V 2.3 × 1 0 12 J 2.3 \times 10^{-12} J 4.6 × 1 0 23 V 4.6 \times 10^{-23} V 5.2 × 1 0 1 W 5.2 \times 10^{-1} W 8.4 × 1 0 20 V 8.4 \times 10^{-20} V

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Winod Dhamnekar
Mar 26, 2020

v = 1.0 × 1 0 4 m / s , v=1.0 \times 10^4 m/s, so, v 2 = 1.0 × 1 0 8 m 2 / s 2 v^2=1.0\times 10^8 m^2/s^2 Hence K E = m e v 2 2 = 9.10938215 × 1 0 31 K g 1.0 × 1 0 8 m 2 / s 2 2 = 4.554691075 × 1 0 23 J o u l e s KE=\frac{m_e*v^2}{2}=\frac{9.10938215\times 10^{-31}Kg*1.0\times10^8m^2/s^2}{2}=4.554691075\times 10^{-23}Joules

Now K E = q e V o l t s KE=q_e*Volts so, V o l t s = K E q e = 4.554691075 × 1 0 23 J o u l e s 1.602176487 × 1 0 19 C o u l o m b = 2.8 × 1 0 4 V o l t s Volts=\frac{KE}{q_e}=\frac{4.554691075\times 10^{-23}Joules}{1.602176487\times 10^{-19}Coulomb}=2.8\times 10^{-4}Volts

2 pending reports

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...