What is the sum of the coefficients of the equation?

Geometry Level pending

This problem’s question: {\color{#D61F06}\text{This problem's question:}} What is the sum of the coefficients of the equation?

There is a minimal volume four-dimensional ellipsoid with these points on its surface: {2,7,2,1}, {2,2,5,1}, {3,5,3,1}, {5,5,5,2} and {7,2,3,5}.

Find the equation of that ellipsoid with at least four digits to the right of the decimal point accuracy. The answer was developed with ten digits to the right of the decimal point.Then, sum the coefficients of the terms (include the constant term as a coefficient). The answer is entered with five digits to the right of the decimal point. Of course, the usual Brilliant allowance for error in a real number answer apples.

The methodology used to solve this problem is now documented in the Brilliant Wiki pages.


The answer is 6.39835.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

See Steiner ellipse, minimal area through three points and Affine transformations . What works in two dimensions works in one dimensional (but then the problem is trivial) and in higher dimensions than two-dimensional. The methodology remains the same.

The equation with rounded coefficients is 1. x 1 2 0.777254 x 2 x 1 1.18091 x 3 x 1 2.94991 x 4 x 1 + 5.81556 x 1 + 0.255156 x 2 2 + 0.545669 x 3 2 + 2.3023 x 4 2 4.10312 x 2 + 0.64231 x 2 x 3 5.93282 x 3 + 1.30053 x 2 x 4 + 1.89688 x 3 x 4 10.2905 x 4 + 17.8745 = 0 1. \mathbf{x}_1^2-0.777254 \mathbf{x}_2 \mathbf{x}_1-1.18091 \mathbf{x}_3 \mathbf{x}_1-2.94991 \mathbf{x}_4 \mathbf{x}_1+5.81556 \mathbf{x}_1+0.255156 \mathbf{x}_2^2+0.545669 \mathbf{x}_3^2+ \\ 2.3023 \mathbf{x}_4^2-4.10312 \mathbf{x}_2+0.64231 \mathbf{x}_2 \mathbf{x}_3-5.93282 \mathbf{x}_3+1.30053 \mathbf{x}_2 \mathbf{x}_4+1.89688 \mathbf{x}_3 \mathbf{x}_4-10.2905 \mathbf{x}_4+17.8745 \\ =0

The ends of the ellipsoid's axes with rounded coordinates: { 2.42044 , 3.03429 , 5.54365 , 0.418117 } { 5.17956 , 5.36571 , 1.65635 , 3.58188 } { 5.13547 , 5.89936 , 3.37647 , 2.12303 } { 2.46453 , 2.50064 , 3.82353 , 1.87697 } { 5.27843 , 1.68465 , 3.20862 , 3.53262 } { 2.32157 , 6.71535 , 3.99138 , 0.467384 } { 0.772199 , 6.31337 , 2.26618 , 0.175684 } { 6.8278 , 2.08663 , 4.93382 , 4.17568 } \begin{array}{|l|l|} \hline \{2.42044,3.03429,5.54365,0.418117\} & \{5.17956,5.36571,1.65635,3.58188\} \\ \{5.13547,5.89936,3.37647,2.12303\} & \{2.46453,2.50064,3.82353,1.87697\} \\ \{5.27843,1.68465,3.20862,3.53262\} & \{2.32157,6.71535,3.99138,0.467384\} \\ \{0.772199,6.31337,2.26618,-0.175684\} & \{6.8278,2.08663,4.93382,4.17568\} \\ \hline \end{array}

OK, OK OK, how did I get there:

The n \bm{n} array, the regular 5-cell vertex homogeneous coordinates in radial form and which locations are on a unit four-dimension sphere it is easy to prove that the unit regular 5-cell has the maximum volume within that sphere: ( 1 1 4 1 4 1 4 1 4 0 15 4 5 3 4 5 3 4 5 3 4 0 0 5 6 5 6 2 5 6 2 0 0 0 5 2 2 5 2 2 ) \left( \begin{array}{|c|c|c|c|c|} \hline 1 & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ \hline 0 & \frac{\sqrt{15}}{4} & -\frac{\sqrt{\frac{5}{3}}}{4} & -\frac{\sqrt{\frac{5}{3}}}{4} & -\frac{\sqrt{\frac{5}{3}}}{4} \\ \hline 0 & 0 & \sqrt{\frac{5}{6}} & -\frac{\sqrt{\frac{5}{6}}}{2} & -\frac{\sqrt{\frac{5}{6}}}{2} \\ \hline 0 & 0 & 0 & -\frac{\sqrt{\frac{5}{2}}}{2} & \frac{\sqrt{\frac{5}{2}}}{2} \\ \hline \end{array} \right)

From here on, I am providing only the numeric forms of the matrices as the radical forms take minutes to compute and take up pages to present.

The same matrix in numeric form: \left( \begin{array}{|l|l|l|l|l|} \hline 1. & -0.25 & -0.25 & -0.25 & -0.25 \ \hline 0. & 0.968246 & -0.322749 & -0.322749 & -0.322749 \ \hline 0. & 0. & 0.912871 & -0.456435 & -0.456435 \ \hline 0. & 0. & 0. & -0.790569 & 0.790569 \ 1. & 1. & 1. & 1. & 1. \ \hline \end{array} \right)]

The inverse of n \bm{n} in numeric form: ( 0.8 0 0 0 0.2 0.2 0.774597 0 0 0.2 0.2 0.258199 0.730297 0 0.2 0.2 0.258199 0.365148 0.632456 0.2 0.2 0.258199 0.365148 0.632456 0.2 ) \left( \begin{array}{|l|l|l|l|l|} \hline 0.8 & 0 & 0 & 0 & 0.2 \\ \hline -0.2 & 0.774597 & 0 & 0 & 0.2 \\ \hline -0.2 & -0.258199 & 0.730297 & 0 & 0.2 \\ \hline -0.2 & -0.258199 & -0.365148 & -0.632456 & 0.2 \\ \hline -0.2 & -0.258199 & -0.365148 & 0.632456 & 0.2 \\ \hline \end{array} \right)

The equation for a four-dimensional sphere: x 1 2 + x 2 2 + x 3 2 + x 4 2 = 1 \mathbf{x}_1^2+\mathbf{x}_2^2+\mathbf{x}_3^2+\mathbf{x}_4^2=1 .

The o \bm{o} , which contains the five four-dimensional points in homogeneous coordinate form: ( 2. 2. 2. 5. 7. 7. 3. 5. 3. 2. 2. 3. 2. 3. 3. 1. 1. 1. 1. 5. 1. 1. 1. 1. 1. ) \left( \begin{array}{|l|l|l|l|l|} \hline 2. & 2. & 2. & 5. & 7. \\ \hline 7. & 3. & 5. & 3. & 2. \\ \hline 2. & 3. & 2. & 3. & 3. \\ \hline 1. & 1. & 1. & 1. & 5. \\ \hline 1. & 1. & 1. & 1. & 1. \\ \hline \end{array} \right)

At this point, the determinant of o \bm{o} is checked to be non-zero so that it is invertible, i. e., the points are not contained in a subspace.

At this point both o \bm{o} and n \bm{n} are known and therefore a \bm{a} can be computed from the a . o = n \bm{a}.\bm{o}=\bm{n} by inverting o \bm{o} and right multiplying n \bm{n} giving a \bm{a} : \[\left( \begin{array}{|l|l|l|l|l|} \hline -0.707547 & 0.377358 & 0.212264 & 0.990566 & -1.64151 \\ \hline -0.645497 & 0. & 0.322749 & 0.645497 & 0. \\ \hline 0.766467 & -0.439211 & -0.732019 & -1.4382 & 4.44379 \\ \hline -0.074582 & -0.223746 & -0.37291 & 0.104415 & 2.35679 \\ \hline 0. & 0. & 0. & 0. & 1. \\ \hline

\end{array} \right)\]

The inverse of a \bm{a} can be computed by inverting a \bm{a} : ( 1.8 2.32379 2.19089 1.26491 3.8 2.8 1.54919 1.09545 1.89737 4.2 1.6 1.0328 0.730297 1.26491 3.6 1. 1.29099 1.82574 1.89737 2. 0. 0. 0. 0. 1. ) \left( \begin{array}{|l|l|l|l|l|} \hline -1.8 & -2.32379 & -2.19089 & 1.26491 & 3.8 \\ \hline 2.8 & -1.54919 & 1.09545 & -1.89737 & 4.2 \\ \hline -1.6 & 1.0328 & -0.730297 & -1.26491 & 3.6 \\ \hline -1. & -1.29099 & -1.82574 & 1.89737 & 2. \\ \hline 0. & 0. & 0. & 0. & 1. \\ \hline \end{array} \right)

At this point, the Singular Value Decomposition of the affine matrix portion of the inverse of a \bm{a} is computed to get the scale factors of the ellipsoid's axes (the diagonal of the σ \bm{\sigma} and the rotation to the directions of those axes (\bm{v}). By the way, this is where the eigenvalues and eigenvectors mentioned by Mark Henning come in to the solution: u = ( 0.644939 0.418597 0.401755 0.497417 0.540846 0.692496 0.42234 0.222631 0.0969208 0.510956 0.787184 0.331469 0.531174 0.290087 0.201405 0.770156 ) \bm{u}=\left( \begin{array}{|l|l|l|l|} \hline 0.644939 & 0.418597 & -0.401755 & 0.497417 \\ \hline -0.540846 & 0.692496 & -0.42234 & -0.222631 \\ \hline 0.0969208 & -0.510956 & -0.787184 & -0.331469 \\ \hline 0.531174 & 0.290087 & 0.201405 & -0.770156 \\ \hline \end{array} \right) diagonal ( σ ) = { 5.43777 , 3.44857 , 1.95091 , 0.414642 } \text{diagonal}(\bm{\sigma})=\{5.43777,3.44857,1.95091,0.414642\} v = ( 0.618177 0.496715 0.306881 0.526266 0.229225 0.854775 0.26391 0.383625 0.560161 0.0913368 0.320217 0.758511 0.501531 0.119552 0.856526 0.0231813 ) \bm{v}=\left( \begin{array}{|l|l|l|l|} \hline -0.618177 & 0.496715 & 0.306881 & -0.526266 \\ \hline -0.229225 & -0.854775 & 0.26391 & -0.383625 \\ \hline -0.560161 & -0.0913368 & 0.320217 & 0.758511 \\ \hline 0.501531 & 0.119552 & 0.856526 & 0.0231813 \\ \hline \end{array} \right)

Yes, I checked the a \bm{a} and a 1 \bm{a}^{-1} were, in fact, inverses of each other.

Using a \bm{a} , { x 1 , x 2 , x 3 , x 4 } \left\{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4\right\} were projected into the unit sphere environment and substituted into the Unit sphere equation ( x 1 2 + x 2 2 + x 3 2 + x 4 2 = 1 \mathbf{x}_1^2+\mathbf{x}_2^2+\mathbf{x}_3^2+\mathbf{x}_4^2=1 ) and then the resultant equation was simplified. The resultant equation was given above and not repeated here.

Forward mapping the positive and negative unit vectors using the v \bm{v} matrix and using the inverse of the a \bm{a} back the original environment of the specified points gives the ends of the axes of the ellipsoid. These also were provided above and not repeated here

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...