What is the sum of the following series?

Calculus Level 4

n = 1 ( 2 n 4 2 n + 1 ) \large \sum_{n=1}^{\infty} \left(\frac{2}{n} - \frac{4}{2n + 1}\right)

Find the closed form of the series above to 3 decimal places.


The answer is 1.227.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The given series can be written as

n = 1 ( 4 2 n 4 2 n + 1 ) = 4 × ( ( 1 2 1 3 ) + ( 1 4 1 5 ) + ( 1 6 1 7 ) + . . . ) = \displaystyle\sum_{n=1}^{\infty} \left(\dfrac{4}{2n} - \dfrac{4}{2n + 1}\right) = 4 \times \left(\left(\dfrac{1}{2} - \dfrac{1}{3}\right) + \left(\dfrac{1}{4} - \dfrac{1}{5}\right) + \left(\dfrac{1}{6} - \dfrac{1}{7}\right) + ...\right) =

4 × ( 1 ( 1 1 2 + 1 3 1 4 + 1 5 . . . . . ) ) = 4 × ( 1 n = 1 ( 1 ) n + 1 n ) = 4 × ( 1 ln ( 2 ) ) = 1.227 \displaystyle 4 \times \left(1 - \left(1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - .....\right)\right) = 4 \times \left(1 - \sum_{n=1}^{\infty} \dfrac{(-1)^{n+1}}{n}\right) = 4 \times (1 - \ln(2)) = \boxed{1.227}

to 3 decimal places, where we recognize this last summation as that of the alternating harmonic series .

Did exactly the same

Aakash Khandelwal - 4 years, 1 month ago

S = lim m n = 1 m ( 2 n 4 2 n + 1 ) = lim m ( 2 1 4 3 + 2 2 4 5 + 2 3 4 7 + . . . + 2 m 4 2 m + 1 ) = lim m ( 2 H m 4 ( H 2 m + 1 1 1 2 H m ) ) where H n is the n th harmonic number. = lim m ( 4 + 4 H m 4 H 2 m + 1 ) = lim m 4 ( 1 + ln m + γ ln ( 2 m + 1 ) γ ) where γ is Euler-Mascheroni constant. = lim m 4 ( 1 + ln ( m 2 m + 1 ) ) = 4 ( 1 ln 2 ) 1.227 \begin{aligned} S & = \lim_{m \to \infty} \sum_{n=1}^m \left(\frac 2n - \frac 4{2n+1} \right) \\ & = \lim_{m \to \infty} \left(\frac 21 - \frac 43 + \frac 22 - \frac 45 + \frac 23 - \frac 47 + ... + \frac 2m - \frac 4{2m+1}\right) \\ & = \lim_{m \to \infty} \left(2H_m - 4\left(H_{2m+1}-1-\frac 12H_m \right)\right) & \small \color{#3D99F6} \text{where }H_n \text{ is the }n \text{th harmonic number.} \\ & = \lim_{m \to \infty} \left(4 + 4H_m - 4H_{2m+1}\right) \\ & = \lim_{m \to \infty} 4 \left(1 + \ln m + {\color{#3D99F6} \gamma} - \ln (2m+1) - {\color{#3D99F6} \gamma} \right) & \small \color{#3D99F6} \text{where }\gamma \text{ is Euler-Mascheroni constant.} \\ & = \lim_{m \to \infty} 4 \left(1 + \ln \left(\frac m{2m+1} \right) \right) \\ & = 4 (1-\ln 2) \\ & \approx \boxed{1.227} \end{aligned}


References

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...