What is the sum of values of x x ?

Algebra Level 2

Find the sum of all roots (real and non-real) to x 3 = 1 x^3=1 .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hongqi Wang
Jan 25, 2021

since x 3 + 0 x 2 1 = 0 x^3 + 0 \cdot x^2 - 1 = 0 , so according to Vieta's formula: r o o t i = 0 1 = 0 \sum root_i = \dfrac 01 = 0

Great! Vieta's formula.

Raymond Fang - 4 months, 2 weeks ago
Raymond Fang
Jan 25, 2021

Complex multiplication is to increase the angle and multiply the distance. Therefore x 1 = 1 , \newline x_1=\LARGE{1}, x 2 = cos τ 3 + i sin τ 3 = 1 2 + 3 2 i = 1 + 3 i 2 , \newline x_2=\cos \frac{\tau}{3} + i \sin \frac{\tau}{3} \newline = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \newline = \LARGE{\frac{-1+\sqrt{3}i}{2}}, x 3 = cos τ 3 + i sin 2 τ 3 = 1 2 3 2 i = 1 3 i 2 . \newline x_3=\cos \frac{\tau}{3} + i \sin \frac{2\tau}{3} \newline = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \newline = \LARGE{\frac{-1-\sqrt{3}i}{2}}. x 1 + x 2 + x 3 = 1 + 1 + 3 i 1 3 i 2 = 1 + 2 2 = 0 . \newline x_1+x_2+x_3=1+\frac{-1+\sqrt{3}i-1-\sqrt{3}i}{2} \newline = 1+\frac{-2}{2} = \LARGE{\boxed{0}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...