what is the value

Calculus Level 2

0 1 ( ln x 1 x ) 2 d x = ? \int_0^1 \left(\frac {\ln x}{1-x}\right)^2 dx = \ ?


The answer is 3.2898.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 23, 2020

I = 0 1 ( ln x 1 x ) 2 d x Let u = ln x d u = d x x = 0 u 2 e u ( 1 e u ) 2 d u Multiply up and down by e 2 u = 0 u 2 e u ( e u 1 ) 2 d u by integration by parts = u 2 e u 1 0 + 0 2 u e u 1 d u = lim u u 2 e u 1 + 0 + 2 ζ ( 2 ) Γ ( 2 ) A / case, L’H o ˆ pital’s rule applies = lim u 2 u e u + 2 π 2 6 1 ! Riemann zeta function ζ ( 2 ) = k = 1 1 k 2 = π 6 = lim u 2 e u + π 2 3 Gamma function Γ ( n ) = ( n 1 ) ! = 0 + π 3 3.29 \begin{aligned} I & = \int_0^1 \left(\frac {\ln x}{1-x}\right)^2 dx & \small \blue{\text{Let }-u = \ln x \implies -du = \frac {dx}x} \\ & = \int_0^\infty \frac {u^2 e^{-u}}{(1-e^{-u})^2} du & \small \blue{\text{Multiply up and down by }e^{2u}} \\ & = \int_0^\infty \frac {u^2 e^u}{(e^u - 1)^2} du & \small \blue{\text{by integration by parts}} \\ & = - \frac {u^2}{e^u - 1} \bigg|_0^\infty + \int_0^\infty \frac {2u}{e^u-1} du \\ & = - \blue{\lim_{u \to \infty} \frac {u^2}{e^u-1}} + 0 + 2 \red{\zeta(2) \Gamma(2)} & \small \blue{\text{A }\infty/\infty \text{ case, L'Hôpital's rule applies}} \\ & = - \blue{\lim_{u \to \infty} \frac {2u}{e^u}} + 2 \cdot \red{\frac {\pi^2}6 \cdot 1!} & \small \red{\text{Riemann zeta function }\zeta (2) = \sum_{k=1}^\infty \frac 1{k^2} = \frac \pi 6} \\ & = - \blue{\lim_{u \to \infty} \frac {2}{e^u}} + \frac {\pi^2}3 & \small \red{\text{Gamma function }\Gamma (n) = (n-1)!} \\ & = \blue 0 + \frac \pi 3 \approx \boxed{3.29} \end{aligned}

References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...