what is the value

Geometry Level 2

3 cot 2 0 4 cos 2 0 = ? \large \sqrt 3\cot 20^\circ - 4 \cos 20^\circ = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 27, 2020

3 cot 2 0 4 cos 2 0 = 2 cos 3 0 cos 2 0 sin 2 0 4 cos 2 0 Note that 2 cos A cos B = cos ( A B ) + cos ( A + B ) = cos 1 0 + cos 5 0 sin 2 0 4 cos 2 0 and cos θ = sin ( 9 0 θ ) = sin 8 0 + sin 4 0 sin 2 0 4 cos 2 0 and sin 2 θ = 2 sin θ cos θ = sin 4 0 ( 2 cos 4 0 + 1 ) sin 2 0 4 cos 2 0 = 2 cos 2 0 ( 2 cos 4 0 + 1 ) 4 cos 2 0 = 4 cos 2 0 cos 4 0 2 cos 2 0 = 2 cos 2 0 + 2 cos 6 0 2 cos 2 0 = 1 \begin{aligned} \sqrt 3\cot 20^\circ - 4 \cos 20^\circ & = \frac \blue{2\cos 30^\circ \cos 20^\circ}{\sin 20^\circ} - 4\cos 20^\circ & \small \blue{\text{Note that }2\cos A \cos B = \cos (A-B) + \cos (A+B)} \\ & = \frac \blue{\cos 10^\circ + \cos 50^\circ}{\sin 20^\circ} - 4\cos 20^\circ & \small \blue{\text{and }\cos \theta = \sin (90^\circ - \theta)} \\ & = \frac \blue{\sin 80^\circ + \sin 40^\circ}{\sin 20^\circ} - 4\cos 20^\circ & \small \blue{\text{and }\sin 2\theta = 2 \sin \theta \cos \theta} \\ & = \frac {\sin 40^\circ(2\cos 40^\circ + 1)}{\sin 20^\circ} - 4\cos 20^\circ \\ & = 2\cos 20^\circ(2 \cos 40^\circ + 1) - 4\cos 20^\circ \\ & = 4 \cos 20^\circ \cos 40^\circ - 2\cos 20^\circ \\ & = 2 \cos 20^\circ + 2 \cos 60^\circ - 2\cos 20^\circ \\ & = \boxed 1 \end{aligned}

sin 40 ° = sin ( 60 ° 20 ° ) 2 sin 20 ° cos 20 ° = \sin 40\degree=\sin (60\degree-20\degree)\implies 2\sin 20\degree\cos 20\degree=

sin 60 ° cos 20 ° cos 60 ° sin 20 ° \sin 60\degree\cos 20\degree-\cos 60\degree\sin 20\degree

4 cos 60 ° sin 20 ° cos 20 ° = sin 60 ° cos 20 ° cos 60 ° sin 20 ° \implies 4\cos 60\degree\sin 20\degree\cos 20\degree=\sin 60\degree\cos 20\degree-\cos 60\degree\sin 20\degree

sin 60 ° cos 20 ° cos 60 ° sin 20 ° cos 20 ° cos 60 ° = 4 sin 20 ° \implies \dfrac{\sin 60\degree\cos 20\degree-\cos 60\degree\sin 20\degree}{\cos 20\degree\cos 60\degree}=4\sin 20\degree

tan 60 ° tan 20 ° = 4 sin 20 ° \implies \tan 60\degree-\tan 20\degree=4\sin 20\degree

tan 20 ° = 3 4 sin 20 ° \implies \tan 20\degree=\sqrt 3-4\sin 20\degree

3 cot 20 ° 4 cos 20 ° = \implies \sqrt 3\cot 20\degree-4\cos 20\degree=

cot 20 ° ( 3 4 sin 20 ° ) = cot 20 ° × tan 20 ° = 1 \cot 20\degree(\sqrt 3-4\sin 20\degree)=\cot 20\degree\times \tan 20\degree=\boxed 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...