What is the value of f ( 2018 ) f(2018) ?

Calculus Level 3

Let f f be defined on R \mathbb{R} with f ( 0 ) = 1 f(0)=1 and f ( x ) f ( y ) x y 2 x , y R \lvert f(x)-f(y)\rvert \leq \lvert x-y \rvert^2 \ \forall x,y \in \mathbb{R} .

What is the value of f ( 2018 ) f(2018) ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sam Machen
Apr 26, 2018

Let x , h R x,h \in \mathbb{R} . Then

f ( x + h ) f ( x ) x + h x 2 = h 2 0 f ( x + h ) f ( x ) h h \begin{aligned}\lvert f(x+h)-f(x) \rvert &\leq \lvert x+h-x \rvert^2 = \lvert h \rvert^2\\\\ \implies 0 \leq \frac{\lvert f(x+h)-f(x) \rvert}{\lvert h \rvert} &\leq \lvert h \rvert\end{aligned} Letting h 0 h \to 0 we get lim h 0 f ( x + h ) f ( x ) h = 0 \lim_{h\to 0} \Bigg\lvert \frac{ f(x+h)-f(x)}{h} \Bigg\rvert = 0 Therefore f f is differentiable with f ( x ) = 0 on R f'(x)=0\ \ \text{on } \mathbb{R} , therefore f f is constant, so f ( 2018 ) = f ( 0 ) = 1 f(2018)=f(0)=\boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...