What is the value of 1 \frac{1}{\infty} ?

Calculus Level 2

lim n 5 n + 1 + 7 n + 1 5 n 1 7 n 1 = ? \large\lim_{n\to \infty} \dfrac{5^{n+1}+7^{n+1}}{5^{n-1}-7^{n-1}}=?

0 49 49 0.5 -0.5 49 -49

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 15, 2017

L = lim x 5 n + 1 + 7 n + 1 5 n 1 7 n 1 Divide up and down by 7 n 1 . = lim x 5 2 ( 5 7 ) n 1 + 7 2 ( 5 7 ) n 1 1 = 0 + 49 0 1 = 49 \begin{aligned} L & = \lim_{x \to \infty} \frac {5^{n+1}+7^{n+1}}{5^{n-1}-7^{n-1}} & \small \color{#3D99F6} \text{Divide up and down by }7^{n-1}. \\ & = \lim_{x \to \infty} \frac {5^2\left(\frac 57\right)^{n-1}+7^2}{\left(\frac 57\right)^{n-1}-1} \\ & = \frac {0+49}{0-1} = \boxed{-49} \end{aligned}

simple very simple

Ayush Jain - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...