What is the value of this formula?

Calculus Level 3

What is the value of lim b a ( a b a b a + a b ) ÷ a b b a b \lim_{b\to a}(\sqrt{ab}-\frac{ab}{a+\sqrt{ab}})\div \frac{\sqrt{ab}-b}{a-b}

a + b a+b a b a-b a a b a b-a

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Raymond Fang
Feb 3, 2021

If we only use b = a b = a , it doesn't work: ( a a 2 2 a ) ÷ 0 0 (a-\frac{a^2}{2a}) \div \color{#D61F06}{\frac{0}{0}} So we can only simplify. ( a b a b a + a b ) ÷ a b b a b = a a b + a b a b a + a b × a b a b b = ( a b ) a b × a ( a + a b ) ( a b b ) = a ( a b ) a b a a b b a b a b + a b = a ( a b ) a b ( a b ) a b = a \newline (\sqrt{ab}-\frac{ab}{a+\sqrt{ab}})\div \frac{\sqrt{ab}-b}{a-b}\\ =\frac{a\sqrt{ab}+ab-ab}{a+\sqrt{ab}} \times \frac{a-b}{\sqrt{ab}-b} \\ =\frac{(a-b)\sqrt{ab} \times a}{(a+\sqrt{ab})(\sqrt{ab}-b)} \\ =\frac{a(a-b)\sqrt{ab}}{a\sqrt{ab}-b\sqrt{ab}-ab+ab} \\ =\frac{a(a-b)\sqrt{ab}}{(a-b)\sqrt{ab}}\\ =\boxed{a}

lim b a a b ( 1 a b a + a b ) × a b a b b \lim_{b\rightarrow{a}}\sqrt{ab}(1-\dfrac{\sqrt{ab}}{a+\sqrt{ab}})× \dfrac{a-b}{\sqrt{ab}-b} = lim b a ( a b a a + a b ) × ( a b ) ( a + b ) a ( a b ) =\lim_{b\rightarrow{a}}(\sqrt{ab} \dfrac{a}{a+\sqrt{ab}})×\dfrac{\color{#E81990}{(\sqrt{a}-\sqrt{b})}\color{#333333}(\sqrt{a}+\sqrt{b})}{\sqrt{a}\color{#E81990}{(\sqrt{a}-\sqrt{b})}} a \implies\boxed{a}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...