What is the value of x in the following problem?

Geometry Level 2

If 1 2 sin 1 ( 3 sin 2 α 5 + 4 cos 2 α ) = tan 1 x \dfrac 12 \sin^{-1} \left(\dfrac {3 \sin 2 \alpha}{5+4 \cos 2 \alpha}\right) = \tan^{-1} x , what is a possible value of x x ?

1 2 tan α \frac 12 \tan \alpha 2 tan α 2 \tan \alpha 1 3 tan α \frac{1}{3}\tan \alpha 3 tan α 3\tan \alpha

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 18, 2019

Let θ = sin 1 ( 3 sin 2 α 5 + 4 cos 2 α ) \theta = \sin^{-1} \left(\dfrac {3\sin 2\alpha}{5+4\cos 2\alpha}\right) . Then tan 1 x = θ 2 x = tan θ 2 \tan^{-1} x = \dfrac \theta 2 \implies x = \tan \dfrac \theta 2 . Now

sin θ = 3 sin 2 α 5 + 4 cos 2 α 2 tan θ 2 1 + tan 2 θ 2 = 6 sin α cos α 5 + 8 cos 2 α 4 Note that x = tan θ 2 2 x 1 + x 2 = 6 tan α sec 2 α + 8 Divide up and down by cos 2 α = 6 tan α 9 + tan 2 α Divide up and down by 9 = 2 3 tan α 1 + 1 9 tan 2 α x = 1 3 tan α \begin{aligned} \sin \theta & = \frac {3\sin 2\alpha}{5+4\cos 2\alpha} \\ \color{#3D99F6} \frac {2\tan \frac \theta 2}{1+ \tan^2 \frac \theta 2} & = \color{#D61F06} \frac {6\sin \alpha \cos \alpha}{5+8\cos^2 \alpha - 4} & \small \color{#3D99F6} \text{Note that }x = \tan \frac \theta 2 \\ \color{#3D99F6} \frac {2x}{1+x^2} & = \color{#D61F06} \frac {6\tan \alpha}{\sec^2 \alpha+8} & \small \color{#D61F06} \text{Divide up and down by }\cos^2 \alpha \\ & = \color{#D61F06} \frac {6\tan \alpha}{9 + \tan^2 \alpha} & \small \color{#D61F06} \text{Divide up and down by }9 \\ & = \color{#D61F06} \frac {\frac 23 \tan \alpha}{1 + \frac 19 \tan^2 \alpha} \\ \implies x & = \boxed{\frac 13 \tan \alpha} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...