What is the volume of this thing?

Calculus Level 5

A right circular cone of base radius 20 cm and height 40 cm is cut vertically by a plane that is 10 10 cm from the axis of the cone. Find the volume of the cut cone (in cubic cm) ?


The answer is 14910.94.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Mendrin
Aug 5, 2016

If z z is 1 2 \dfrac{1}{2} of the vertical axis, then we integrate via slices parallel to the base

9 16 ( 1 3 40 π 20 2 ) + 2 0 10 ( 10 ( 20 z ) 2 10 2 + ( 20 z ) 2 arcsin ( 10 20 z ) ) d z = 14910.9374... \dfrac { 9 }{ 16 } \left( \dfrac { 1 }{ 3 } 40\cdot \pi \cdot { 20 }^{ 2 } \right) +2 \displaystyle \int _{ 0 }^{ 10 }{ \left( 10\sqrt { { \left( 20-z \right) }^{ 2 }-{ 10 }^{ 2 } } +{ \left( 20-z \right) }^{ 2 }\arcsin\left( \dfrac { 10 }{ 20-z } \right) \right) dz } =14910.9374...

The volume of the top half of the cone is 1 8 \dfrac{1}{8} of the whole cone, while the volume of half of the conical frustum is 7 16 \dfrac{7}{16} of the whole cone. Add both to get 9 16 \dfrac{9}{16} , and then add that integrated volume.

The volume removed from the original right cone of vertical height H H & base radius R R cut by a plane parallel to the symmetrical axis at a distance x x is given by the most Generalized Formula

V r e m o v e d = H 3 R ( R 3 cos 1 ( x R ) 2 R x R 2 x 2 + x 3 ln ( R + R 2 x 2 x ) ) \color{#D61F06}{\Large V_{removed}=\frac{H}{3R}\left(R^3\cos^{-1}\left(\frac{x}{R}\right)-2Rx\sqrt{R^2-x^2}+x^3\ln\left(\frac{R+\sqrt{R^2-x^2}}{x}\right)\right)}

substituting the corresponding values, H = 40 , R = 20 , x = 10 H=40, R=20, x=10 , one should get

V r e m o v e d = 40 3 20 ( 2 0 3 cos 1 ( 10 20 ) 2 20 10 x 2 0 2 1 0 2 + 1 0 3 ln ( 20 + 2 0 2 1 0 2 10 ) ) 1844.223384 V_{removed}=\frac{40}{3\cdot 20}\left(20^3\cos^{-1}\left(\frac{10}{20}\right)-2\cdot 20\cdot 10x\sqrt{20^2-10^2}+10^3\ln\left(\frac{20+\sqrt{20^2-10^2}}{10}\right)\right)\approx 1844.223384

hence, the volume of cut cone

V l e f t = 1 3 π R 2 H V r e m o v e d = 1 3 π ( 20 ) 2 10 1844.223384 14910.93744 c m 3 V_{left}=\frac13\pi R^2H-V_{removed}=\frac13\pi (20)^210-1844.223384\approx \color{#3D99F6}{14910.93744\ cm^3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...