What is the volume ratio of the minimal volume ellipsoid?

Geometry Level pending

This problem’s question: {\color{#D61F06}\text{This problem's question:}} What is the volume of the minimal volume ellipsoid volume of the unit radius ball \frac{\text{volume of the minimal volume ellipsoid}}{\text{volume of the unit radius ball}} with these points on its surface: ( 1 2 3 4 1 4 1 2 3 4 3 4 1 2 3 4 1 4 1 2 9 4 1 4 ) \left( \begin{array}{ccc} -\frac{1}{2} & -\frac{3}{4} & -\frac{1}{4} \\ -\frac{1}{2} & -\frac{3}{4} & \frac{3}{4} \\ \frac{1}{2} & -\frac{3}{4} & -\frac{1}{4} \\ \frac{1}{2} & \frac{9}{4} & -\frac{1}{4} \\ \end{array} \right) , reading point coordinates row wise?


The answer is 0.974278579257494.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Transforming the homogeneous coordinates, read column wise, of the original points o \bm{o} to the homogeneous coordinates, also read column wise, of the vertices of the regular tetrahedron circumscribed by the unit radius ball n \bm{n} by solving the matrix equation: a . o = n \bm{a}.\bm{o}=\bm{n} , availing a 1 \bm{a}^{-1} to go from the unit ball to the ellipsoid, computing the singular values decomposition of a 1 \bm{a}^{-1} , computing the product of the scaling matrix therefrom gives the volume ratio: 0.974278579257494 0.974278579257494 .

a . o = n \bm{a}.\bm{o}=\bm{n}

a . ( 1 2 1 2 1 2 1 2 3 4 3 4 3 4 9 4 1 4 3 4 1 4 1 4 1 1 1 1 ) = ( 1 1 3 1 3 1 3 0 2 2 3 2 3 2 3 0 0 2 3 2 3 1 1 1 1 ) \bm{a}.\left( \begin{array}{cccc} -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{4} & -\frac{3}{4} & -\frac{3}{4} & \frac{9}{4} \\ -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \\ 1 & 1 & 1 & 1 \\ \end{array} \right)=\left( \begin{array}{cccc} 1 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{2 \sqrt{2}}{3} & -\frac{\sqrt{2}}{3} & -\frac{\sqrt{2}}{3} \\ 0 & 0 & -\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}} \\ 1 & 1 & 1 & 1 \\ \end{array} \right)

a . o . o 1 = n . o 1 a = n . o 1 \bm{a}.\bm{o}.\bm{o}^{-1}=\bm{n}.\bm{o}^{-1} \Rightarrow \bm{a}=\bm{n}.\bm{o}^{-1}

a = ( 1.33333 0. 1.33333 0. 0.471405 0. 0.942809 0. 0.816497 0.544331 0. 0. 0. 0. 0. 1. ) \bm{a}=\left( \begin{array}{cccc} -1.33333 & 0. & -1.33333 & 0. \\ -0.471405 & 0. & 0.942809 & 0. \\ -0.816497 & 0.544331 & 0. & 0. \\ 0. & 0. & 0. & 1. \\ \end{array} \right)

a 1 = o . n 1 \bm{a}^{-1}=\bm{o}.\bm{n}^{-1}

a 1 = ( 0.5 0.707107 0. 0. 0.75 1.06066 1.83712 0. 0.25 0.707107 0. 0. 0. 0. 0. 1. ) \bm{a}^{-1}=\left( \begin{array}{cccc} -0.5 & -0.707107 & 0. & 0. \\ -0.75 & -1.06066 & 1.83712 & 0. \\ -0.25 & 0.707107 & 0. & 0. \\ 0. & 0. & 0. & 1. \\ \end{array} \right)

The singular values decomposition if the affine matrix of a 1 = ( 0.5 0.707107 0. 0.75 1.06066 1.83712 0.25 0.707107 0. ) \bm{a}^{-1}=\left( \begin{array}{ccc} -0.5 & -0.707107 & 0. \\ -0.75 & -1.06066 & 1.83712 \\ -0.25 & 0.707107 & 0. \\ \end{array} \right) gives:

( 0.241984 0.659683 0.711521 0.961534 0.261277 0.0847705 0.129983 0.704665 0.697533 ) , ( 2.32845 0. 0. 0. 0.839641 0. 0. 0. 0.498337 ) , ( 0.34772 0.0503582 0.936245 0.55096 0.818937 0.160577 0.758639 0.57167 0.312506 ) \left( \begin{array}{ccc} 0.241984 & -0.659683 & 0.711521 \\ 0.961534 & 0.261277 & -0.0847705 \\ -0.129983 & 0.704665 & 0.697533 \\ \end{array} \right), \\ \left( \begin{array}{ccc} 2.32845 & 0. & 0. \\ 0. & 0.839641 & 0. \\ 0. & 0. & 0.498337 \\ \end{array} \right), \\ \left( \begin{array}{ccc} -0.34772 & -0.0503582 & -0.936245 \\ -0.55096 & 0.818937 & 0.160577 \\ 0.758639 & 0.57167 & -0.312506 \\ \end{array} \right)

The product of the diagonal elements of the scaling (center) matrix is the scaling factor requested: 0.974278579257494.

The computation was done in double precision and reported that way. The solution above was truncated to 6 places.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...