What is the Volume ?

Level pending

If the shaded region in Rectangle A B C D ABCD above with diagonal A C AC and inscribed semicircle whose diameter is B C BC is revolved about the line A D AD , then the resulting volume V V can be represented as V = a a b ( c a b d a arcsin ( b d ) ) π V = a^{a * b}(\dfrac{c^a}{b * d^{a}} - \arcsin(\dfrac{b}{d}))\pi , where a , b , c a,b,c and d d are coprime positive integers.

Find a + b + c + d a + b + c + d .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 23, 2019

Using the diagram above the equation of line A C AC is y = 1 2 x y = \dfrac{1}{2}x or x = 2 y x = 2y and for the circle centered at (4,4) with have ( x 4 ) 2 + ( y 4 ) 2 = 16 (x - 4)^2 + (y - 4)^2 = 16

x = 2 y ( 2 y 4 ) 2 + ( y 4 ) 2 = 16 5 y 2 24 y + 16 = 0 x = 2y \implies (2y - 4)^2 + (y - 4)^2 = 16 \implies 5y^2 - 24y + 16 = 0 \implies

y = 4 5 , y = 4 y = \dfrac{4}{5}, y = 4 Since we already have ( 8 , 4 ) P ( 8 5 , 4 5 ) (8,4) \implies P(\dfrac{8}{5},\dfrac{4}{5})

So the volume of the pink region when revolved about the x x axis is V 1 = π 4 0 8 5 x 2 d x = V_{1} =\dfrac{\pi}{4}\displaystyle\int_{0}^{\dfrac{8}{5}} x^2 dx = x 3 3 0 8 5 = 128 375 π \dfrac{x^3}{3}|_ {0}^{\dfrac{8}{5}} = \boxed{\dfrac{128}{375}\pi} .

( x 4 ) 2 + ( y 4 ) 2 = 16 y = 4 16 ( x 4 ) 2 (x - 4)^2 + (y - 4)^2 = 16 \implies y = 4 - \sqrt{16 - (x - 4)^2} which is the portion of the circle needed.

V 2 = π 8 5 4 ( 4 16 ( x 4 ) 2 ) 2 d x = V_{2} = \pi\displaystyle\int_{\dfrac{8}{5}}^{4} (4 - \sqrt{16 - (x - 4)^2})^2 dx =

π 8 5 4 ( 32 ( x 4 ) 2 8 16 ( x 4 ) 2 ) d x \pi\displaystyle\int_{\dfrac{8}{5}}^{4} (32 - (x - 4)^2 - 8\sqrt{16 - (x - 4)^2}) dx

8 5 4 ( 32 ( x 4 ) 2 ) d x = 32 x ( x 4 ) 3 3 8 5 4 \displaystyle\int_{\dfrac{8}{5}}^{4} (32 - (x - 4)^2) dx = 32x - \dfrac{(x - 4)^3}{3}|_{\dfrac{8}{5}}^{4} = 9024 125 = \dfrac{9024}{125}

For I = 16 ( x 4 ) 2 d x I = \displaystyle\int \sqrt{16 - (x - 4)^2} dx

Let x 4 = 4 sin ( θ ) d x = 4 cos ( θ ) I = 8 ( 1 + cos ( 2 θ ) ) d θ x - 4 = 4\sin(\theta) \implies dx = 4\cos(\theta) \implies I = 8\displaystyle\int (1 + \cos(2\theta)) d\theta

= 8 ( θ + sin ( θ ) cos ( θ ) ) = 8 ( arcsin ( x 4 4 ) + ( x 4 ) 16 ( x 4 ) 2 16 ) = 8(\theta + \sin(\theta)\cos(\theta)) = 8(\arcsin(\dfrac{x - 4}{4}) + \dfrac{(x - 4)\sqrt{16 - (x - 4)^2}}{16})

8 5 4 ( 16 ( x 4 ) 2 ) d x = \implies \displaystyle\int_{\dfrac{8}{5}}^{4} (\sqrt{16 - (x - 4)^2}) dx = 8 arcsin ( 3 5 ) + 96 25 8\arcsin(\dfrac{3}{5}) + \dfrac{96}{25}

V 2 = π ( 9024 125 64 arcsin ( 3 5 ) 768 25 ) = \implies V_{2} = \pi(\dfrac{9024}{125} - 64\arcsin(\dfrac{3}{5}) - \dfrac{768}{25}) = π ( 5184 125 64 arcsin ( 3 5 ) ) \boxed{\pi(\dfrac{5184}{125} - 64\arcsin(\dfrac{3}{5}))}

V = V 1 + V 2 = π ( 128 375 + 5184 125 64 arcsin ( 3 5 ) ) = \implies V = V_{1} + V_{2} = \pi(\dfrac{128}{375} + \dfrac{5184}{125} - 64\arcsin(\dfrac{3}{5})) = 64 π ( 49 75 arcsin ( 3 5 ) ) = 64\pi(\dfrac{49}{75} - \arcsin(\dfrac{3}{5})) =

2 2 3 ( 7 2 3 5 2 arcsin ( 3 5 ) ) π = 2^{2 * 3}(\dfrac{7^2}{3 * 5^2} - \arcsin(\dfrac{3}{5}))\pi = a a b ( c a b d a arcsin ( b d ) ) π a + b + c + d = 17 a^{a * b}(\dfrac{c^a}{b * d^{a}} - \arcsin(\dfrac{b}{d}))\pi \implies a + b + c + d = \boxed{17}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...