what is this????

Algebra Level 1

When does x^3+y^3+z^3-3xyz equals to zero?

(x,y,z)=(1,4,-2) (x,y,z)=(1,4,-2), (1,-2,4), (4,1,-2), (4,-2,1),(-2,1,4),(-2,4,1) x+y+z=0 or x=y=z Impossible

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 17, 2015

x 3 + y 3 + z 3 = ( x + y + z ) ( x 2 + y 2 + z 2 ) ( x y + y z + z x ) ( x + y + z ) + 3 x y z x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 ) ( x y + y z + z x ) ( x + y + z ) \begin{aligned} x^3+y^3+z^3 & = (x+y+z)(x^2+y^2+z^2) \\ & \quad - (xy+yz+zx)(x+y+z) +3xyz \\ x^3+y^3+z^3 - 3xyz & = (x+y+z)(x^2+y^2+z^2) \\ & \quad - (xy+yz+zx)(x+y+z) \end{aligned}

When x + y + z = 0 : x+y+z = 0:

x 3 + y 3 + z 3 3 x y z = ( 0 ) ( x 2 + y 2 + z 2 ) ( x y + y z + z x ) ( 0 ) = 0 \begin{aligned} \Rightarrow x^3+y^3+z^3 - 3xyz & = (0)(x^2+y^2+z^2) - (xy+yz+zx)(0)\\ & = \boxed{0} \end{aligned}

When x = y = z : x=y=z:

x 3 + y 3 + z 3 3 x y z = 3 x 3 3 x 3 = 0 \begin{aligned} \Rightarrow x^3+y^3+z^3 - 3xyz & = 3x^3 - 3x^3 \\ & = \boxed{0} \end{aligned}

This doesn't prove there are no other equality cases.

x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) = 0 x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=0

\iff either x + y + z = 0 x+y+z=0 or

x 2 + y 2 + z 2 x y y z z x = 0 x^2+y^2+z^2-xy-yz-zx=0

( x y ) 2 + ( y z ) 2 + ( z x ) 2 = 0 x = y = z \iff (x-y)^2+(y-z)^2+(z-x)^2=0\iff x=y=z .

mathh mathh - 6 years ago

Log in to reply

This is the standard solution. Nice job.

Zhiwei William Zhang - 6 years ago

Log in to reply

William, just key in "\ " and "\ " before and after x^3 + y^3 + z^3 - 3xyz and you will get perfect x 3 + y 3 + z 3 3 x y z x^3 + y^3 + z^3 - 3xyz in LaTex.

Chew-Seong Cheong - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...