What is Written 1

Calculus Level 4

Let f ( x ) f(x) be a real valued bijective function satisfying f ( x ) = sin 2 ( sin ( x + 1 ) ) f'(x) = \sin^2 (\sin (x+1)) and f ( 0 ) = 3 f(0) = 3 . Find the value of ( f 1 ) ( 3 ) \left( f^{-1}\right)' (3) .

Clarifications :

  • f ( x ) f'(x) denotes the first derivative of f ( x ) f(x) with respect to x x .

  • f 1 ( x ) f^{-1} (x) denotes the inverse function of f ( x ) f(x) .

cos 2 ( sin 1 ) \cos ^{ 2 }{ \left( \sin { 1 } \right) } 2 cos ( sin 4 ) sin 4 2\cos { \left( \sin { 4 } \right) } \sin { 4 } 1 cos 2 ( sin 1 ) \frac { 1 }{ \cos ^{ 2 }{ \left( \sin { 1 } \right) } } \quad 1 2 cos ( sin 4 ) sin 4 \frac { 1 }{ 2\cos { \left( \sin { 4 } \right) } \sin { 4 } } sin 2 sin 1 \sin ^{ 2 }{ \sin { 1 } } cos 2 ( cos 4 ) \cos ^{ 2 }{ \left( \cos { 4 } \right) } 1 sin 2 sin 1 \frac { 1 }{ \sin ^{ 2 }{ \sin { 1 } } } 1 cos 2 ( cos 4 ) \frac { 1 }{ \cos ^{ 2 }{ \left( \cos { 4 } \right) } } \quad

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sahil Bansal
May 20, 2016

Since f f is a bijective function, hence f ( f 1 ( x ) ) = x f(f^{-1}(x))=x .

And, we need to find derivative of f 1 ( x ) f^{-1}(x) to get the value of ( f 1 ) ( 3 ) (f^{-1})^{'}(3) , so we differentiate the above equation using chain rule:

f ( f 1 ( x ) ) . ( f 1 ) ( x ) = 1 f'(f^{-1}(x)).(f^{-1})^{'}(x)=1

( f 1 ) ( x ) = 1 f ( f 1 ( x ) ) \Rightarrow (f^{-1})^{'}(x)=\frac{1}{f'(f^{-1}(x))}

Putting x = 3 x=3 in the above equation:

( f 1 ) ( 3 ) = 1 f ( f 1 ( 3 ) ) \Rightarrow (f^{-1})^{'}(3)=\frac{1}{f'(f^{-1}(3))}

Now, since f ( 0 ) = 3 f 1 ( 3 ) = 0 f(0)=3 \Rightarrow f^{-1}(3)=0

( f 1 ) ( 3 ) = 1 f ( 0 ) \Rightarrow (f^{-1})^{'}(3)=\frac{1}{f'(0)}

( f 1 ) ( 3 ) = 1 sin 2 sin 1 \Rightarrow (f^{-1})^{'}(3)=\frac{1}{\sin ^{2}\sin 1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...