What Is written 2

Calculus Level 4

Let f ( x ) f(x) be a real valued bijective function satisfying f ( x ) = sin 2 ( sin ( x + 1 ) ) f'(x) = \sin^2 (\sin (x+1)) and f ( 0 ) = 3 f(0) = 3 . Find the value of ( f 1 ) ( 3 ) \left( f^{-1}\right)'' (3) .

Clarifications :

  • f ( x ) f'(x) denotes the first derivative of f ( x ) f(x) with respect to x x .

  • f ( x ) f''(x) denotes the second derivative of f ( x ) f(x) with respect to x x .

  • f 1 ( x ) f^{-1} (x) denotes the inverse function of f ( x ) f(x) .

2 sin cos 1 sin 2 1 sin 5 cos 1 -\frac { 2\sin { \cos { 1 } \sin ^{ 2 }{ 1 } } }{ \sin ^{ 5 }{ \cos { 1 } } } sin 2 sin 1 cos 2 cos 1 -\frac { \sin ^{ 2 }{ \sin { 1 } } }{ \cos ^{ 2 }{ \cos { 1 } } } 2 sin cos 1 sin 1 sin 5 cos 1 -\frac { 2\sin { \cos { 1 } \sin { 1 } } }{ \sin ^{ 5 }{ \cos { 1 } } } 2 sin cos 1 sin 1 sin 6 cos 1 -\frac { 2\sin { \cos { 1 } \sin { 1 } } }{ \sin ^{ 6 }{ \cos { 1 } } } 2 sin cos 1 sin 2 1 sin 6 cos 1 -\frac { 2\sin { \cos { 1 } \sin ^{ 2 }{ 1 } } }{ \sin ^{ 6 }{ \cos { 1 } } } 2 cos 1 cos sin 1 sin 6 sin 1 -\frac { 2\cos { 1 } \cos { \sin { 1 } } }{ \sin ^{ 6 }{ \sin { 1 } } } cos 2 cos 1 sin 2 sin 1 -\frac { \cos ^{ 2 }{ \cos { 1 } } }{ \sin ^{ 2 }{ \sin { 1 } } } 2 cos 1 cos sin 1 sin 5 sin 1 -\frac { 2\cos { 1 } \cos { \sin { 1 } } }{ \sin ^{ 5 }{ \sin { 1 } } }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Samuel Lo
Oct 1, 2018

Step 1:

f ( x ) = ( sin ( sin ( x + 1 ) ) ) 2 f ( 0 ) = ( sin ( sin ( 1 ) ) ) 2 \begin{aligned} f^{\prime} (x) &= (\sin(\sin(x+1)))^2 \\ f^{\prime} (0) &= (\sin(\sin(1)))^2 \\ \end{aligned}

Step 2:

f ( x ) = ( sin ( sin ( x + 1 ) ) ) 2 f ( x ) = 2 sin ( sin ( x + 1 ) ) cos ( sin ( x + 1 ) ) cos ( x + 1 ) f ( 0 ) = 2 sin ( sin ( 1 ) ) cos ( sin ( 1 ) ) cos ( 1 ) \begin{aligned} f^{\prime} (x) &= (\sin(\sin(x+1)))^2 \\ f^{\prime \prime} (x) &= 2 \sin(\sin(x+1)) \cdot \cos(\sin(x+1)) \cdot \cos(x+1) \\ f^{\prime \prime} (0) &= 2 \sin(\sin(1)) \cdot \cos(\sin(1)) \cdot \cos(1) \\ \end{aligned}

Step 3:

Because f f is bijective and f ( 0 ) = 3 f(0)=3 , f 1 ( 3 ) = 0 f^{-1} (3) = 0

Step 4:

f ( f 1 ( x ) ) = x f ( f 1 ( x ) ) ( f 1 ) ( x ) = 1 ( f 1 ) ( x ) = 1 f ( f 1 ( x ) ) \begin{aligned} f(f^{-1}(x)) &= x \\ f^{\prime}(f^{-1}(x)) \cdot (f^{-1})^{\prime}(x) &= 1 \\ (f^{-1})^{\prime}(x) &= \frac{1}{ f^{\prime}(f^{-1}(x)) } \\ \end{aligned}

Step 5:

( f 1 ) ( x ) = 1 f ( f 1 ( x ) ) ( f 1 ) ( x ) = 1 ( f ( f 1 ( x ) ) ) 2 f ( f 1 ( x ) ) ( f 1 ) ( x ) ( f 1 ) ( x ) = 1 ( f ( f 1 ( x ) ) ) 2 f ( f 1 ( x ) ) 1 f ( f 1 ( x ) ) ( f 1 ) ( x ) = f ( f 1 ( x ) ) ( f ( f 1 ( x ) ) ) 3 ( f 1 ) ( 3 ) = f ( f 1 ( 3 ) ) ( f ( f 1 ( 3 ) ) ) 3 = f ( 0 ) ( f ( 0 ) ) 3 = 2 sin ( sin ( 1 ) ) cos ( sin ( 1 ) ) cos ( 1 ) ( ( sin ( sin ( 1 ) ) ) 2 ) 3 = 2 sin ( sin ( 1 ) ) cos ( sin ( 1 ) ) cos ( 1 ) ( sin ( sin ( 1 ) ) ) 6 = 2 cos ( sin ( 1 ) ) cos ( 1 ) ( sin ( sin ( 1 ) ) ) 5 \begin{aligned} (f^{-1})^{\prime}(x) &= \frac{1}{ f^{\prime}(f^{-1}(x)) } \\ (f^{-1})^{\prime \prime}(x) &= - \frac{1}{ (f^{\prime}(f^{-1}(x)))^2 } \cdot f^{\prime \prime}(f^{-1}(x)) \cdot (f^{-1})^{\prime}(x) \\ (f^{-1})^{\prime \prime}(x) &= - \frac{1}{ (f^{\prime}(f^{-1}(x)))^2 } \cdot f^{\prime \prime}(f^{-1}(x)) \cdot \frac{1}{ f^{\prime}(f^{-1}(x)) } \\ (f^{-1})^{\prime \prime}(x) &= - \frac{ f^{\prime \prime}(f^{-1}(x)) }{ (f^{\prime}(f^{-1}(x)))^3 } \\ (f^{-1})^{\prime \prime}(3) &= - \frac{ f^{\prime \prime}(f^{-1}(3)) }{ (f^{\prime}(f^{-1}(3)))^3 } \\ &= - \frac{ f^{\prime \prime}(0) }{ (f^{\prime}(0))^3 } \\ &= - \frac{ 2 \sin(\sin(1)) \cdot \cos(\sin(1)) \cdot \cos(1) }{ ((\sin(\sin(1)))^2)^3 } \\ &= - \frac{ 2 \sin(\sin(1)) \cdot \cos(\sin(1)) \cdot \cos(1) }{ (\sin(\sin(1)))^6 } \\ &= - \frac{ 2 \cos(\sin(1)) \cdot \cos(1) }{ (\sin(\sin(1)))^5 } \\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...