What is wrong with this series?

Calculus Level 5

n = 1 , 3 , 5 , k sin 2 ( n k ) n 2 \large \sum_{n=1,3,5,\ldots}^\infty \dfrac{k \sin^2 \left( \frac nk \right) } {n^2}

Let k k be a positive number that is not a multiple of 1 π \dfrac1\pi .

The series above equals to A B π C \dfrac AB \pi^C for positive integers A , B A,B and C C with gcd ( A , B ) = 1 \gcd(A,B) = 1 , find the value of A + B + C A+B+C .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

n = 0 k sin 2 ( 2 n + 1 k ) ( 2 n + 1 ) 2 1 16 e 2 i k k ( Φ ( e 4 i k , 2 , 1 2 ) + e 4 i k Φ ( e 4 i k , 2 , 1 2 ) π 2 e 2 i k ) \sum _{n=0}^{\infty } \frac{k \sin ^2\left(\frac{2 n+1}{k}\right)}{(2 n+1)^2} \Longrightarrow\\ -\frac{1}{16} e^{-\frac{2 i}{k}} k \left(\Phi \left(e^{-\frac{4 i}{k}},2,\frac{1}{2}\right)+e^{\frac{4 i}{k}} \Phi \left(e^{\frac{4 i}{k}},2,\frac{1}{2}\right)-\pi ^2 e^{\frac{2 i}{k}}\right) Rationalize [ Table [ Chop [ N [ t π ] ] , { k , Range [ 100 ] } ] ] a table of 1 4 . \text{Rationalize}\left[\text{Table}\left[\text{Chop}\left[N\left[\frac{t}{\pi }\right]\right],\{k,\text{Range}[100]\}\right]\right] \Longrightarrow \text{a table of} \frac14.

A=1, b=4 and C=1 for a total of 6.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...