{ x 2 = 8 x + y y 2 = x + 8 y If the above equation hold for real x , y provided x = y , then determine the numerical value of x 2 + y 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How did you get x + y = 7 ?
Log in to reply
From x 2 − y 2 = ( x − y ) ( x + y ) . Because x − y = 0 so we can divide them by x − y .
x 2 = 8 x + y . . . e q ( 1 ) y 2 = x + 8 y . . . e q ( 2 ) Substrate eq(1)by eq(2) x 2 − y 2 = 7 x − 7 y ( x + y ) ( x − y ) = 7 ( x − y ) x + y = 7 x 2 + y 2 = 9 x + 9 y x 2 + y 2 = 9 ( x + y ) x 2 + y 2 = 9 × 7 x 2 + y 2 = 6 3
the same way i did.
x 2 + y 2 = 9 ( x + 7 )
x 2 − y 2 = 7 ( x − y )
Multiply x 2 + y 2 by x 2 − y 2 ,
( x 2 + y 2 ) ( x 2 − y 2 ) = 6 3 ( x 2 − y 2 ) ⇒ x 2 + y 2 = 6 3
can you explain how you got in your brain "instead of focusing on $x^2+y^2$ i should go for $x^2-y^2$" ??
Log in to reply
If you focus on x 2 + y 2 , you will need to find the value of x + y . Unless you try something new, you'll stuck there forever. Dun be afraid of breaking teh rulezzz!!!!11oneoneone
It's simple algebra a^2 - b^2 = (a+b)(a-b)
Hahaha I used brute force and a quartic :') nice to know that there's an easier way
ang galing.. GG nung solution.
Problem Loading...
Note Loading...
Set Loading...
x 2 − y 2 = 7 x − 7 y x 2 − y 2 = 7 ( x − y ) The assumption x = y implies, x + y = 7
x 2 + y 2 = 9 x + 9 y x 2 + y 2 = 9 ( x + y ) x 2 + y 2 = 9 ( 7 ) = 6 3