What kind of recursion is this?

Algebra Level 5

Let { a n } \{a_n\} and { b n } \{b_n\} be two sequences of real numbers such that a 0 b 0 = 1 a_{0}b_{0} = 1 , and, for all integers n 0 , n \geq 0, the following is satisfied:

a n + 1 = 6 ( a n b n ) 2 ( a n + b n ) b n + 1 = 6 ( a n + b n ) + 2 ( a n b n ) . \begin{aligned} a_{n+1} &= \sqrt{6}(a_n - b_n) - \sqrt{2}(a_n + b_n) \\ b_{n+1} &= \sqrt{6}(a_n + b_n) + \sqrt{2}(a_n - b_n) . \end{aligned}

Find the value of x , x, to the nearest tenth, such that a 2016 b 2016 = 2 x . a_{2016}b_{2016} = 2^x.


The answer is 8064.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Jan 12, 2015

Consider the sequence of vectors ( a n b n ) . \dbinom{a_n}{b_n}. If we write our recursions as

a n + 1 = ( 6 2 ) a n + ( 6 2 ) b n b n + 1 = ( 6 + 2 ) a n + ( 6 2 ) b n , \begin{aligned} a_{n+1} &= (\sqrt{6} - \sqrt{2})a_n + (-\sqrt{6} - \sqrt{2})b_n\\ b_{n+1} &= (\sqrt{6} + \sqrt{2})a_n + (\sqrt{6} - \sqrt{2})b_n, \end{aligned}

we realize that we can represent ( a n + 1 b n + 1 ) \dbinom{a_{n+1}}{b_{n+1}} as a product of a matrix and the vector ( a n b n ) . \dbinom{a_n}{b_n}. We have

( a n + 1 b n + 1 ) = ( ( 6 2 ) a n + ( 6 2 ) b n ( 6 + 2 ) a n + ( 6 2 ) b n ) = ( 6 2 6 2 6 + 2 6 2 ) ( a n b n ) = 4 ( ( 6 2 ) / 4 ( 6 2 ) / 4 ( 6 + 2 ) / 4 ( 6 2 ) / 4 ) ( a n b n ) . \begin{aligned} \binom{a_{n+1}}{b_{n+1}} &= \binom{(\sqrt{6} - \sqrt{2})a_n + (-\sqrt{6} - \sqrt{2})b_n}{(\sqrt{6} + \sqrt{2})a_n + (\sqrt{6} - \sqrt{2})b_n}\\ &= \begin{pmatrix} \sqrt{6} - \sqrt{2} & -\sqrt{6} - \sqrt{2}\\ \sqrt{6} + \sqrt{2} & \sqrt{6} - \sqrt{2} \end{pmatrix} \binom{a_n}{b_n} \\ &= 4 \begin{pmatrix} (\sqrt{6} - \sqrt{2})/4 & (-\sqrt{6} - \sqrt{2})/4 \\ (\sqrt{6} + \sqrt{2})/4 & (\sqrt{6} - \sqrt{2})/4 \end{pmatrix} \binom{a_n}{b_n}. \end{aligned}

Since cos 7 5 = 6 2 4 \cos 75^{\circ} = \dfrac{\sqrt{6} - \sqrt{2}}{4} and sin 7 5 = 6 + 2 4 , \sin 75^{\circ} = \dfrac{\sqrt{6} + \sqrt{2}}{4},

( a n + 1 b n + 1 ) = 4 ( cos 7 5 sin 7 5 sin 7 5 cos 7 5 ) ( a n b n ) . \binom{a_{n+1}}{b_{n+1}} = 4 \begin{pmatrix} \cos 75^{\circ} & -\sin 75^{\circ} \\ \sin 75^{\circ} & \cos 75^{\circ} \end{pmatrix} \binom{a_n}{b_n}.

Let A = ( cos 7 5 sin 7 5 sin 7 5 cos 7 5 ) . A = \begin{pmatrix} \cos 75^{\circ} & -\sin 75^{\circ} \\ \sin 75^{\circ} & \cos 75^{\circ} \end{pmatrix} . Notice that, when a vector is multiplied by A A , the vector is rotated 7 5 75^{\circ} counterclockwise. We have

( a 2016 b 2016 ) = 2 2 A ( a 2015 b 2015 ) = 2 2 A ( 2 2 A ( a 2014 b 2014 ) ) = = 2 4032 A 2016 ( a 0 b 0 ) . \binom{a_{2016}}{b_{2016}} = 2^2 A \binom{a_{2015}}{b_{2015}} = 2^2 A \left (2^2 A \binom{a_{2014}}{b_{2014}} \right )= \cdots = 2^{4032} A^{2016} \binom{a_0}{b_0}.

A 2016 A^{2016} is a counterclockwise rotation of 7 5 75^{\circ} 2016 2016 times. Since 2016 = 36 × 2 × 28 2016 = 36 \times 2 \times 28 and 75 = 5 × 15 , 75 = 5 \times 15, 2016 × 75 2016 \times 75 is a multiple of 360 , 360, so A 2016 A^{2016} is just the identity matrix, and this term vanishes. We are finally left with

( a 2016 b 2016 ) = 2 4032 ( a 0 b 0 ) = ( 2 4032 a 0 2 4032 b 0 ) . \binom{a_{2016}}{b_{2016}} = 2^{4032} \binom{a_0}{b_0} = \binom{2^{4032}a_0}{2^{4032}b_0}.

If two vectors are equal, then their components must be equal, so a 2016 = 2 4032 a 0 a_{2016} = 2^{4032}a_0 and b 2016 = 2 4032 b 0 . b_{2016} = 2^{4032}b_0. Finally,

a 2016 b 2016 = 2 4032 a 0 ( 2 4032 b 0 ) = 2 8064 a 0 b 0 = 2 8064 , a_{2016}b_{2016} = 2^{4032}a_0(2^{4032}b_0) = 2^{8064}a_0b_0 = 2^{8064},

so x = 8064 . x = \boxed{8064}.

My bigger brother just told me the answer. LOL

jaikirat sandhu - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...