What kind of relation is this?

A sequence of numbers is defined using the relation a n = a n 1 + 6 a n 2 a_{n}=-a_{n-1}+6a_{n-2} , where a 1 = 2 a_{1}=2 , a 2 = 1 a_{2}=1 . Find a 100 + 3 a 99 a_{100}+3a_{99} .

6 × 2 96 6 \times 2^{96} 6 × 2 98 6 \times 2^{98} 7 × 2 96 7 \times 2^{96} 7 × 2 98 7 \times 2^{98}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 18, 2017

The characteristic equation of the linear recurrence relation a n = a n 1 + 6 a n 2 a_n = a_{n-1}+6a_{n-2} is as follows:

r 2 + r 6 = 0 ( r 2 ) ( r + 3 ) = 0 r = 2 , 3 \begin{aligned} r^2+r-6 & = 0 \\ (r-2)(r+3) & = 0 \\ \implies r & = 2, - 3 \end{aligned}

Let b n = a n + 1 b_n = a_{n+1} , a 1 = b 0 = 2 \implies a_1 = b_0 = 2 and a 2 = b 1 = 1 a_2 = b_1 = 1 and:

b n = c 1 ( 2 n ) + c 2 ( 3 ) n b 0 = c 1 + c 2 = 2 b 1 = 2 c 1 3 c 2 = 1 c 1 = 7 5 c 2 = 3 5 b n = 7 ( 2 n ) + ( 1 ) n 3 n + 1 5 \begin{aligned} b_n & = c_1(2^n) + c_2(-3)^n \\ b_0 & = c_1 + c_2 = 2 \\ b_1 & = 2c_1 -3 c_2 = 1 \\ \implies c_1 & = \frac 75 \\ \implies c_2 & = \frac 35 \\ \implies b_n & = \frac {7(2^n) + (-1)^n3^{n+1}}5 \end{aligned}

Therefore, we have:

a 100 + 3 a 99 = b 99 + 3 b 98 = 7 ( 2 99 ) 3 100 + 21 ( 2 98 ) + 3 100 5 = 14 ( 2 98 ) + 21 ( 2 98 ) 5 = 7 × 2 98 \begin{aligned} a_{100}+3a_{99} & = b_{99}+3b_{98} \\ & = \frac {7(2^{99})-3^{100} + 21(2^{98}) + 3^{100}}5 \\ & = \frac {14(2^{98})+21(2^{98})}5 \\ & = \boxed{7 \times 2^{98}} \end{aligned}

Wesley Zumino
Jul 5, 2017

Let x n a n + 3 a n 1 x_n \equiv a_n + 3\,a_{n-1} . We are seeking x 100 x_{100} . Note that since a 1 = 2 a_1 = 2 and a 2 = 1 a_2=1 , then x 2 = a 2 + 3 a 1 = 1 + 3 ( 2 ) = 7 x_2 = a_2 + 3\, a_1 = 1 + 3(2) = 7 . Using the recursion relation a n = a n 1 + 6 a n 2 a_n = -a_{n-1} + 6 \, a_{n-2} , we have:

x n = a n + 3 a n 1 = ( a n 1 + 6 a n 2 ) + 3 a n 1 = 2 a n 1 + 6 a n 2 = 2 ( a n 1 + 3 a n 2 ) = 2 x n 1 \qquad x_n = a_n + 3\, a_{n-1} \;=\; (-a_{n-1} + 6 \, a_{n-2}) + 3\; a_{n-1} \;=\; 2\,a_{n-1} + 6 \, a_{n-2} \;=\; 2 (a_{n-1} + 3\, a_{n-2}) \; =\; 2 \,x_{n-1} .

Iterative substitution gives: x n = 2 x n 1 = 2 2 x n 2 = = 2 k x n k x_n = 2 \,x_{n-1} = 2^2 \, x_{n-2} = \cdots = 2^k \, x_{n-k} . After k = n 2 k=n-2 iterations, x n = 2 n 2 x 2 = 2 n 2 7 x_n = 2^{n-2} \, x_2 = 2^{n-2} \cdot 7 .

Therefore, when n = 100 n=100 , x 100 = 7 × 2 98 \boxed{x_{100} = 7 \times 2^{98}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...