What kind of Sorcery is this ?

Algebra Level 5

Consider: a = x 2 5 x + 6 a = \sqrt{x^2 -5x +6} b = x 2 5 x + 4 b = \sqrt{x^2 -5x +4}

Such that,

( a + b ) x 2 + ( a b ) x 2 = 2 ( x + 4 4 ) \left( a + b \right)^{\dfrac{x}{2}} + \left( a - b \right)^{\dfrac{x}{2}} = 2^{ \left( \dfrac{x+4}{4} \right) }

Find the predecessor of the sum of all values of x satisfying the given equation.

Question inspired from: Cengage - Algebra


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mathh Mathh
Aug 13, 2014

a^2-b^2=(a+b)(a-b)=2\tag{1}

We'll use this fact multiple times. Now square both sides of the initial equation:

( a + b ) x + ( a b ) x + 2 2 x 2 = ( 2 ) x + 4 = 4 2 x 2 (a+b)^x+(a-b)^x+2\cdot 2^{\frac{x}{2}}=(\sqrt{2})^{x+4}=4\cdot 2^{\frac{x}{2}}

( a + b ) x + ( a b ) x = 2 2 x 2 \implies (a+b)^x+(a-b)^x=2\cdot 2^{\frac{x}{2}}

Now square both sides again.

( ( a + b ) 2 ) x + ( ( a b ) 2 ) x + 2 2 x = 4 2 x ((a+b)^2)^x+((a-b)^2)^x+2\cdot 2^x=4\cdot 2^x

( ( a + b ) 2 ) x + ( ( a b ) 2 ) x = 2 2 x \implies ((a+b)^2)^x+((a-b)^2)^x=2\cdot 2^x

\stackrel{:2^x}\implies \left(\frac{(a+b)^2}{2} \right)^x+\left(\frac{(a-b)^2}{2} \right)^x=2

\stackrel{(1)}\implies \left(\frac{(a+b)^2}{2} \right)^x+ \left(\frac{2}{(a+b)^2} \right)^x=2

The 2 terms on the LHS are positive, hence:

AM-GM: ( ( a + b ) 2 2 ) x + ( 2 ( a + b ) 2 ) x 2 ( ( a + b ) 2 2 ) x ( 2 ( a + b ) 2 ) x = 2 \color{royalblue}{\textbf{AM-GM:}} \left(\frac{(a+b)^2}{2} \right)^x+ \left(\frac{2}{(a+b)^2} \right)^x \ge 2\sqrt{\left(\frac{(a+b)^2}{2} \right)^x \left(\frac{2}{(a+b)^2} \right)^x}= 2

Hence the LHS is equal to its minimum value, which is achieved if and only if

( ( a + b ) 2 2 ) x = ( 2 ( a + b ) 2 ) x \left(\frac{(a+b)^2}{2} \right)^x=\left(\frac{2}{(a+b)^2} \right)^x

( a + b ) 4 x = ( 2 ) 4 x \implies (a+b)^{4x}=(\sqrt{2})^{4x}

If x = 0 x=0 , then this equation always holds. After checking x = 0 x=0 on the initial conditions, we see it works. Thus x 1 = 0 \boxed{x_1=0} is one solution.

If x 0 x\neq 0 , then

a+b=\sqrt{2}\stackrel{(1)}\implies a-b=\sqrt{2}

{ a + b = 2 a b = 2 { a = 2 b = 0 \begin{cases}a+b=\sqrt{2}\\a-b=\sqrt{2}\end{cases}\implies \begin{cases}a=\sqrt{2}\\b=0\end{cases}

( x 1 ) ( x 4 ) = 0 { x 2 = 1 or x 3 = 4 \implies \sqrt{(x-1)(x-4)}=0\implies \begin{cases}\boxed{x_2=1}\\\text{or}\\\boxed{x_3=4}\end{cases}

We see that these 2 solutions satisfy all the conditions. Thus summing all the boxed solutions gives:

answer = x 1 + x 2 + x 3 1 = 0 + 1 + 4 1 = 4 . \color{royalblue}{\textbf{answer}}=x_1+x_2+x_3-1=0+1+4-1=\boxed{4}. \square

Took two guesses because of predecessor.

Sal Gard - 4 years, 11 months ago
Dhruva Patil
Nov 28, 2014

( a + b ) x 2 + ( a b ) x 2 = 2 x + 4 4 S q u a r i n g b o t h s i d e s ( a + b ) x + ( a b ) x + 2 ( a 2 b 2 ) x 2 = 2 x + 4 2 F r o m t h e g i v e n e q u a t i o n s , ( a 2 b 2 ) = 2 ( a + b ) x + ( a b ) x + 2 ( 2 ) x 2 = 2 x + 4 2 ( a + b ) x + ( a b ) x + 2 x + 2 2 = 2 x + 4 2 ( a + b ) x + ( a b ) x = 2 x + 4 2 2 x + 2 2 ( a + b ) x + ( a b ) x = 2 x 2 ( 2 ) ( a + b ) x + ( a b ) x 2 x + 2 2 = 0 ( a + b ) x + ( a b ) x 2 ( 2 ) x 2 = 0 [ ( a + b ) x 2 ( a b ) x 2 ] 2 = 0 ( a + b ) x 2 = ( a b ) x 2 a + b = a b b = b b = 0 G i v e n : b = x 2 5 x + 4 b = ( x 1 ) ( x 4 ) b = 0 w h e n x = 1 o r 4 S u m = 4 + 1 = 5 A n s w e r ( p r e d e c e s s o r ) = 4 { (a+b) }^{ \frac { x }{ 2 } }+{ (a-b) }^{ \frac { x }{ 2 } }={ 2 }^{ \frac { x+4 }{ 4 } }\\ Squaring\quad both\quad sides\\ { (a+b) }^{ x }+{ (a-b) }^{ x }+2{ ({ a }^{ 2 }{ -b }^{ 2 }) }^{ \frac { x }{ 2 } }={ 2 }^{ \frac { x+4 }{ 2 } }\\ From\quad the\quad given\quad equations,\quad ({ a }^{ 2 }{ -b }^{ 2 })=2\\ { (a+b) }^{ x }+{ (a-b) }^{ x }+2{ (2) }^{ \frac { x }{ 2 } }={ 2 }^{ \frac { x+4 }{ 2 } }\\ { (a+b) }^{ x }+{ (a-b) }^{ x }+{ 2 }^{ \frac { x+2 }{ 2 } }={ 2 }^{ \frac { x+4 }{ 2 } }\\ { (a+b) }^{ x }+{ (a-b) }^{ x }={ 2 }^{ \frac { x+4 }{ 2 } }-{ 2 }^{ \frac { x+2 }{ 2 } }\\ { (a+b) }^{ x }+{ { (a-b) }^{ x } }={ 2 }^{ \frac { x }{ 2 } }(2)\\ { (a+b) }^{ x }+{ (a-b) }^{ x }-{ 2 }^{ \frac { x+2 }{ 2 } }=0\\ { (a+b) }^{ x }+{ (a-b) }^{ x }-2{ (2) }^{ \frac { x }{ 2 } }=0\\ { [{ (a+b) }^{ \frac { x }{ 2 } }-{ (a-b) }^{ \frac { x }{ 2 } }] }^{ 2 }=0\\ { (a+b) }^{ \frac { x }{ 2 } }={ (a-b) }^{ \frac { x }{ 2 } }\\ a+b=a-b\\ b=-b\\ b=0\\ Given:\\ b=\sqrt { { x }^{ 2 }-5x+4 } \\ b=\sqrt { { (x }-1)(x-4) } \\ b=0\quad when\quad x=1\quad or\quad 4\\ Sum=4+1=5\\ Answer(predecessor)=\boxed { 4 }

Iancarlo Espinosa
Aug 14, 2014

(a+b)x/2 + (a-b)x/2 = 2[(x+4)/4]
2ax = x+4 and a=[(x-3)(x-2)]^1/2
4x^4 - 20x^3 + 24x^2 = x^2 + 8x + 16 x^4 - 5x^3 + (23x^2)/4 - 8x - 16 = 0 = (x-p)(x-q)(x-r)(x-s)
All the values of x are p,q,r and s
-(p+q+r+s) = -5 (Vieta)
So the answer is 4




0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...