What large cubes you have!

Algebra Level 2

99 9 3 12 3 3 87 6 3 999^3 - 123^3 - 876^3

is equal to:

999 + 123 + 876 999 + 123 + 876 3 × 999 × 123 × 876 3 \times 999 \times 123 \times 876 99 9 2 + 12 3 2 + 87 6 2 999^2 + 123 ^2 + 876 ^ 2 999 × 123 × 876 999 \times 123 \times 876

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sravanth C.
Jul 9, 2015

Let: a = 999 a=999 , b = 123 b=123 and c = 876 c=876 .

Here we have, a 3 b 3 ( a b ) 3 = a 3 b 3 ( a 3 b 3 3 a b ( a b ) = a 3 b 3 a 3 + b 3 + 3 a b ( a b ) = 3 a b ( a b ) a^3-b^3-(a-b)^3\\ =a^3-b^3-(a^3-b^3-3ab(a-b)\\ =a^3-b^3-a^3+b^3+3ab(a-b)\\=3ab(a-b)

Now, substituting the values of a a , b b and c c : 3 × 999 × 123 × ( 999 123 ) = 3 × 999 × 123 × 876 3\times 999\times 123\times(999-123)\\=\boxed{3×999×123×876}

Moderator note:

Good use of the algebraic identity.

The other way of approaching this is see that if a + b + c = 0 a + b + c = 0 , then

a 3 + b 3 + c 3 = 3 a b c a^3 + b^3 + c^3 = 3abc

Nihar Mahajan
Jul 10, 2015

I did by letting a = 999 , b = 123 , c = 876 a=999 \ , \ b=-123 \ , \ c = -876 .

So we have a + b + c = 0 a+b+c=0 .We have familiar identity :

a 3 + b 3 + c 3 = 3 a b c = 3 × 999 × ( 123 ) × ( 876 ) = 3 × 999 × ( 123 ) × ( 876 ) a^3+b^3+c^3 = 3abc = 3 \times 999 \times (-123) \times (-876) \\ = 3 \times 999 \times (123) \times (876)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...