What makes a number binomial? Generalizing the binomial theorem

Expand ( a + b ) n (a+b)^{n} .

( n 0 ) a n + ( n 1 ) a n 1 b + . . . + ( n n ) b n \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b + ... +\binom{n}{n}b^{n} i = 1 n ( 1 ) n ( n i ) a i b n i \sum_{i = 1}^{n}(-1)^{n}\binom{n}{i}a^{i}b^{n-i} ( n 0 ) a n ( n 1 ) a n 1 b + . . . + ( 1 ) n ( n n ) b n \binom{n}{0}a^{n} - \binom{n}{1}a^{n-1}b + ... +(-1)^{n}\binom{n}{n}b^{n} Not possible to generalize

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Atul Kumar
Jun 17, 2014

just a simple application of binomial theorem : (a+b)^n=nC0.a^n+nc1.a^n-1.b+......+nCn.b^n

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...