What makes a number binomial? Identity 4

If ( 10 1 ) + 2 ( 10 2 ) + 3 ( 10 3 ) + . . . + 10 ( 10 10 ) = 2 10 A \binom{10}{1} + 2\binom{10}{2} + 3\binom{10}{3} +... + 10\binom{10}{10} = 2^{ 10}A ,

find the last digit of A A


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hendry Tanuwijaya
Dec 25, 2014

The equation can be written as n = 0 10 n ( 10 n ) \sum _{ n=0 }^{ 10 }{ n\left( \begin{matrix} 10 \\ n \end{matrix} \right) }

By using identity ( n k ) = ( n n k ) \left( \begin{matrix} n \\ k \end{matrix} \right) =\left( \begin{matrix} n \\ n-k \end{matrix} \right) , we can get that n ( 10 n ) + ( 10 n ) ( 10 10 n ) = n ( 10 n ) + ( 10 n ) ( 10 n ) = 10 ( 10 n ) = 5 ( ( 10 n ) + ( 10 10 n ) ) n\left( \begin{matrix} 10 \\ n \end{matrix} \right) +\left( 10-n \right) \left( \begin{matrix} 10 \\ 10-n \end{matrix} \right) =n\left( \begin{matrix} 10 \\ n \end{matrix} \right) +\left( 10-n \right) \left( \begin{matrix} 10 \\ n \end{matrix} \right) =10\left( \begin{matrix} 10 \\ n \end{matrix} \right) =5\left( \left( \begin{matrix} 10 \\ n \end{matrix} \right) +\left( \begin{matrix} 10 \\ 10-n \end{matrix} \right) \right)

Then, n = 0 10 n ( 10 n ) \sum _{ n=0 }^{ 10 }{ n\left( \begin{matrix} 10 \\ n \end{matrix} \right) } can be written as 5 × n = 0 10 ( 10 n ) 5 \times \sum _{ n=0 }^{ 10 }{ \left( \begin{matrix} 10 \\ n \end{matrix} \right) } which result is 5 × 2 10 5 \times 2^{10} and A = 5 A = 5

So, the last digit of A A is 5 \boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...