What seems is not actually............

Calculus Level 5

Find the value of lim n ln ( e n ( n n + 1 ) n 2 ) \displaystyle \lim_{n \to \infty} \ln \left(e^n\left(\dfrac {n}{n+1}\right)^{n^2}\right)


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Jan 31, 2015

use log(ab)=loga +logb

Put n = 1 x n=\frac{1}{x}

lim x 0 1 x ( 1 x l n ( 1 1 + x ) + 1 ) \displaystyle \lim_{x \to 0} \frac{1}{x}(\frac{1}{x} ln(\frac{1}{1+x})+1)

= lim x 0 1 x ( 1 1 x l n ( 1 + x ) ) \displaystyle \lim_{x\to 0}\frac{1}{x}(1-\frac{1}{x}ln(1+x))

= lim x 0 x ( x x 2 2 + x 3 3 . . . ) x 2 \displaystyle \lim_{x\to 0}\frac{x-(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-...)}{x^{2}}

= 1 2 \frac{1}{2}

plz do upvote

Is this mcalurin series for log x

Tejas Suresh - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...