Let be real nonzero numbers such that and Compute the largest possible value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
From the second condition, we have 2 a b c = 2 a b + 2 b c + 2 c a + 2 . Thus, 2 ( a b + b c + c a ) = ( a + b + c ) 2 − a 2 − b 2 − c 2 = 1 4 4 − a 2 − b 2 − c 2 .
Therefore, 2 a b c = 1 4 6 − a 2 − b 2 − c 2 . We now have 2 a b c − 2 ( a + 2 b − 3 c ) = 1 4 6 − ( a 2 + 2 a ) − ( b 2 + 4 b ) − ( c 2 − 6 c ) = 1 6 0 − ( ( a + 1 ) 2 + ( b + 2 ) 2 + ( c − 3 ) 2 ) .
By QM-AM, ( a + 1 ) 2 + ( b + 2 ) 2 + ( c − 3 ) 2 ≥ 3 ( 3 ( a + 1 ) + ( b + 2 ) + ( c − 3 ) ) 2 = 4 8 . Therefore, 2 a b c − 2 ( a + 2 b − 3 c ) ≤ 1 6 0 − 2 × 5 6 = 1 1 2 , so the maximum value of a b c − ( a + 2 b − 3 c ) = 5 6 . This occurs at a = 3 , b = 2 , c = 7 .