What the limit!!

Calculus Level 5

lim x 3 ( x 3 ) ζ ( x 2 3 x 2 ) x 4 9 x 3 + 30 x 2 44 x + 24 \large{\displaystyle \lim_{x\to 3} \frac { \left( x-3 \right) { \zeta }^{ \prime }\left( { x }^{ 2 }-3x-2 \right) }{ { x }^{ 4 }-9{ x }^{ 3 }+30{ x }^{ 2 }-44x+24 } }

If the value of the above expression is equal to ζ ( A ) B π C \large{-\frac { \zeta \left( A \right) }{ B{ \pi }^{ C } } }

Find A × B × C A\times B\times C

ζ ( s ) \zeta^{\prime} (s) is first derivative of ζ ( s ) \zeta (s)


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aman Rajput
May 15, 2021

Simplify the denominator as lim x 3 ( x 3 ) ζ ( x 2 3 x 2 ) ( x 3 ) ( x 2 ) 3 \lim_{x\to 3}\frac{(x-3)\zeta'(x^2-3x-2)}{(x-3)(x-2)^3} = lim x 3 ζ ( x 2 3 x 2 ) ( x 2 ) 3 =\lim_{x\to 3}\frac{\zeta'(x^2-3x-2)}{(x-2)^3} = ζ ( 2 ) 1 3 = ζ ( 2 ) =\frac{\zeta'(-2)}{1^3}=\zeta'(-2) Using the property ζ ( 2 n ) = ( 1 ) n ζ ( 2 n + 1 ) ( 2 n ) ! 2 2 n + 1 π 2 n \zeta'(-2n)=\frac{(-1)^n\zeta(2n+1)(2n)!}{2^{2n+1}\pi^{2n}} We get answer as ζ ( 3 ) 4 π 2 \boxed{-\frac{\zeta(3)}{4\pi^2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...