A geometry problem by Aly Ahmed

Geometry Level 2

Quadrilateral A B C D ABCD is inscribed in a circle. If A B = m AB = m , A C = l AC=l , A D = n AD=n , C A B = θ \angle CAB = \theta , and C A D = φ \angle CAD = \varphi , find

l sin ( θ + φ ) n sin θ + m sin φ \frac {l\sin (\theta+\varphi)}{n\sin \theta+m \sin \varphi}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the diagonal B D = l BD=l' , B C = m BC=m' , and C D = n CD=n' . Since A B C D ABCD is a cyclic quadrilateral , C D B = C A B = θ \angle CDB = \angle CAB = \theta , D B C = D A C = φ \angle DBC = \angle DAC = \varphi , and B C D = 18 0 D A B = 18 0 ( θ + φ ) \angle BCD = 180^\circ - \angle DAB = 180^\circ -(\theta + \varphi) . By Ptolemy's theorem we have

A C B D = A B C D + B C D A l l = m n + n m l = m n l + n m l By sine rule = m sin D B C sin B C D + n sin C D B sin B C D = m sin φ sin ( 18 0 ( θ + φ ) ) + n sin θ sin ( 18 0 ( θ + φ ) ) Note that sin ( 18 0 ϕ ) = sin ϕ = m sin φ + n sin θ sin ( θ + φ ) l sin ( θ + φ ) n sin θ + m sin φ = 1 \begin{aligned} AC \cdot BD & = AB \cdot CD + BC \cdot DA \\ ll' & = mn' + nm' \\ l & = m \cdot \frac {n'}{l'} + n \cdot \frac {m'}{l'} & \small \blue{\text{By sine rule}} \\ & = m \cdot \frac {\sin \angle DBC}{\sin \angle BCD} + n \cdot \frac {\sin \angle CDB}{\sin \angle BCD} \\ & = \frac {m\sin \varphi}{\sin (180^\circ -(\theta + \varphi))} + \frac {n\sin \theta}{\sin (180^\circ -(\theta + \varphi))} & \small \blue{\text{Note that }\sin (180^\circ - \phi) = \sin \phi} \\ & = \frac {m\sin \varphi + n\sin \theta}{\sin (\theta + \varphi)} \\ \implies \frac {l\sin (\theta + \varphi)}{n\sin \theta + m\sin \varphi} & = \boxed 1 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...