What type of Quadric is this ? (2)

Geometry Level 5

A quadric is given by,

r T A r + b T r + c = 0 r^T A r + b^T r + c = 0

where r = [ x , y , z ] T r = [x, y, z ]^T , and

A = [ 34 3 5 3 26 15 5 15 10 ] A = \begin{bmatrix} 34 && -3 && 5 \\ -3 && 26 && 15 \\ 5 && 15 && 10 \end{bmatrix}

b = [ 156 398 270 ] T b = \begin{bmatrix} -156 && -398 && -270 \end{bmatrix} ^T

and

c = 1826 c = 1826

What does the above equation represent graphically ?

Ellipsoid Paraboloid A pair of parallel planes A straight line Cone A pair of intersecting planes None of the others Hyperboloid of two sheets

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
May 6, 2019

The orthogonal matrix P = ( 3 10 1 14 1 35 1 10 3 14 3 35 0 2 14 5 35 ) P \; = \; \left( \begin{array}{ccc} \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{14}} & \frac{1}{\sqrt{35}} \\ -\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{14}} & \frac{3}{\sqrt{35}} \\ 0 & \frac{2}{\sqrt{14}} & -\frac{5}{\sqrt{35}}\end{array}\right) is such that P T A P = ( 35 0 0 0 35 0 0 0 0 ) P^TAP \; = \; \left(\begin{array}{ccc} 35 & 0 & 0 \\ 0 & 35 & 0 \\ 0 & 0 & 0 \end{array}\right) and hence the equation of the quadric becomes 35 X 2 + 35 Y 2 + α X + β Y + γ Z + c = 0 35X^2 + 35Y^2 + \alpha X + \beta Y + \gamma Z + c \; = \; 0 where ( X Y Z ) = P T r ( α β γ ) = P T b \left(\begin{array}{c} X \\ Y \\ Z \end{array}\right) \; = \; P^T \mathbf{r} \hspace{2cm} \left(\begin{array}{c} \alpha \\ \beta \\ \gamma \end{array}\right) \; = \; P^T\mathbf{b} We calculate that α = 7 10 \alpha =-7\sqrt{10} , β = 135 14 \beta = -135\sqrt{14} , γ = 0 \gamma = 0 , and so the equation of the quadric is 35 X 2 + 35 Y 2 7 10 X 135 14 Y + 1826 = 0 35 ( X 1 10 ) 2 + 35 ( Y 27 14 ) 2 = 0 \begin{aligned} 35X^2 + 35Y^2 - 7\sqrt{10}X - 135\sqrt{14}Y + 1826 & = \; 0 \\ 35\big(X - \tfrac{1}{\sqrt{10}}\big)^2 + 35\big(Y - \tfrac{27}{\sqrt{14}}\big)^2 & = \; 0 \end{aligned} and so the quadric is the straight line determined by the formulae X = 1 10 X = \tfrac{1}{\sqrt{10}} , Y = 27 14 Y = \tfrac{27}{\sqrt{14}} , or the vector equation r = P ( 1 10 27 14 λ ) λ R \mathbf{r} \; = \; P\left(\begin{array}{c} \frac{1}{\sqrt{10}} \\ \frac{27}{\sqrt{14}} \\ \lambda \end{array}\right) \hspace{2cm} \lambda \in \mathbb{R}

Very nice, Mark, I'd like to learn more about these techniques. I am not sure if we found the same line. Could you please check?

K T - 1 year, 10 months ago

Log in to reply

Since r = P ( 1 10 27 14 λ ) = ( 78 35 + 1 35 λ 199 35 + 3 35 λ 27 7 5 35 λ ) = ( 3 μ 8 3 μ 5 μ ) \mathbf{r} \; = \; P\left(\begin{array}{c} \frac{1}{\sqrt{10}} \\ \frac{27}{\sqrt{14}} \\ \lambda \end{array}\right) \; = \; \left(\begin{array}{c} \tfrac{78}{35} + \tfrac{1}{\sqrt{35}}\lambda \\ \tfrac{199}{35} + \tfrac{3}{\sqrt{35}}\lambda \\ \tfrac{27}{7} - \tfrac{5}{\sqrt{35}}\lambda\end{array}\right) \; = \; \left(\begin{array}{c} 3-\mu \\ 8 - 3\mu \\ 5\mu \end{array}\right) where μ = 27 35 1 35 λ \mu = \tfrac{27}{35} - \tfrac{1}{\sqrt{35}}\lambda , your and my line are the same.

Mark Hennings - 1 year, 10 months ago

Thanks very much!

K T - 1 year, 10 months ago

Because of the way that Wolfram Mathematica works, some of the transpose operations had to be dropped in my solution.

r = { x , y , z } , a = ( 34 3 5 3 26 15 5 15 10 ) , b = { 156 , 398 , 270 } , c = 1826 r=\{x,y,z\}, a=\left( \begin{array}{ccc} 34 & -3 & 5 \\ -3 & 26 & 15 \\ 5 & 15 & 10 \\ \end{array} \right), b=\{-156,-398,-270\}, c=1826

Solve [ r . a . r + b . r + c = 0 , z ] { { z 1 10 ( 35 9 x 2 + 6 x y + 6 x y 2 2 y 1 5 x 15 y + 135 ) } , { z 1 10 ( 35 9 x 2 + 6 x y + 6 x y 2 2 y 1 5 x 15 y + 135 ) } } \text{Solve}[r.a.r+b.r+c=0,z]\Rightarrow \\ \left\{\left\{z\to \frac{1}{10} \left(-\sqrt{35} \sqrt{-9 x^2+6 x y+6 x-y^2-2 y-1}-5 x-15 y+135\right)\right\}, \\ \left\{z\to \frac{1}{10} \left(\sqrt{35} \sqrt{-9 x^2+6 x y+6 x-y^2-2 y-1}-5 x-15 y+135\right)\right\}\right\}

Solve [ 9 x 2 + 6 x y + 6 x y 2 2 y 1 0 ] { y ConditionalExpression [ 3 x 1 , x R ] \text{Solve}\left[-9 x^2+6 x y+6 x-y^2-2 y-1\geq 0\right]\Rightarrow \{y\to \text{ConditionalExpression}[3 x-1,x\in \mathbb{R}]

Fully simplified, with 3 x 1 3x-1 substituted for y y in the solution for the original equation (above), yields { 5 ( x 3 ) , 5 ( x 3 ) } \{-5 (x-3),-5 (x-3)\} .

ParametricPlot3D [ { x , 3 x 1 , 5 ( x 3 ) } , { x , 20 , 20 } , BoxRatios { 1 , 1 , 1 } , AxesOrigin { 0 , 0 , 0 } ] \text{ParametricPlot3D}[\{x,3 x-1,-5 (x-3)\},\{x,-20,20\},\text{BoxRatios}\to \{1,1,1\},\text{AxesOrigin}\to \{0,0,0\}]

What is the difference between a pair of intersecting planes and a straight line so far as their 3-D equations are concerned?

A Former Brilliant Member - 2 years, 1 month ago

I did not see two planes intersecting. I did see complex conics with only a straight line as real. That is why I selected a straight line. It is true that the intersection of two non-parallel planes is a straight line. The solution for the intersection of two non-parallel planes and of a straight line in three dimensions have the same form.

A Former Brilliant Member - 2 years, 1 month ago
K T
Jul 21, 2019

Evaluating r T A r + b T r + c \vec{r}^TA\vec{r}+\vec{b}^T\vec{r}+c gives the quadric equation: 34 x 2 + 26 y 2 + 10 z 2 6 x y + 10 x z + 30 y z 156 x 398 y 270 z + 1826 = 0 34x^2+26y^2+10z^2-6xy+10xz+30yz-156x-398y-270z+1826=0

Setting y = z = 0 y=z=0 , I found no intersections with the x-axis.

Also, no intersection with y-axis or z-axis.

For the plane intersections below I used Excel to get it in standard form, performing a rotation and a translation of the coordinate systems. And I used it to convert solution coordinates back.

Intersection with yz-plane (x=0) is a single point: ( 0 , 1 , 15 ) (0,-1,15) .

Intersection with xz-plane (y=0) is a single point: ( 1 3 , 0 , 40 3 ) (\frac{1}{3},0,\frac{40}{3}) .

Intersection with xy-plane (z=0) is a single point: ( 3 , 8 , 0 ) (3,8,0) .

Intersection with plane x=1 is a single point: ( 1 , 2 , 10 ) (1,2,10) .

Intersection with plane y=1 is a single point:: ( 2 3 , 1 , 35 3 ) (\frac{2}{3},1,\frac{35}{3}) .

For all planes I chose, I got a single point, and all points found were on the line parametrized by ( x , y , z ) = ( 3 t , 8 3 t , 5 t ) (x,y,z)=(3-t,8-3t,5t)

As a check, putting these values for x, y, and z in the equation above gives 34 ( 3 t ) 2 + 26 ( 8 3 t ) 2 + 10 ( 5 t ) 2 6 ( 3 t ) ( 8 3 t ) + 10 ( 3 t ) 5 t + 30 ( 8 3 t ) 5 t 156 ( 3 t ) 398 ( 8 3 t ) 270 ( 5 t ) + 1826 = 0 34(3-t)^2+26(8-3t)^2+10(5t)^2-6(3-t)(8-3t)+10(3-t)5t+30(8-3t)5t-156(3-t)-398(8-3t)-270(5t)+1826=0 which is just the identity.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...