What will you try?

Calculus Level 5

f ( x ) = 1 1 x + x 2 \large f(x)=\frac{1}{1-x+x^2}

If f 6 ( x ) = a b sin c ( arctan ( d e x f ) ) sin ( g arctan ( d e x f ) ) f_6(x) = \frac ab \sin^c \left( \text{arctan} \left( \frac {\sqrt d}{ex-f} \right) \right) \sin \left( g \cdot \text{arctan} \left( \frac {\sqrt d}{ex-f} \right) \right)

where a , b , c , d , e , f , g a,b,c,d,e,f,g are integers independent of x x . Evaluate: a + b + c + d + e + f + g a+b+c+d+e+f+g .

Details and Assumptions :

  • f n ( x ) f_n(x) denotes n th n^\text{th} derivative of f ( x ) f(x)

  • The greatest common divisor between a a and b b is 1/

  • d d is square free.


The answer is 20509.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Miraj Shah
Mar 16, 2016

Let ω , ω 2 \omega, \omega^2 denote the complex cube roots of unity such that

ω = 1 + i 3 2 \omega = \frac{-1+i\sqrt{3}}{2}

ω 2 = 1 i 3 2 \omega^2 = \frac{-1-i\sqrt{3}}{2}

Therefore

f ( x ) = 1 ( x + ω ) ( x + ω 2 ) = 1 ω 2 ω ( 1 x + ω 1 x + ω 2 ) \large f(x) = \frac{1}{(x+\omega)(x+\omega^2)} = \frac{1}{\omega^2-\omega}\left(\frac{1}{x+\omega}-\frac{1}{x+\omega^2}\right) .

We know that the n t h n^{th} derivative of 1 x \frac{1}{x} is ( 1 ) n n ! x n + 1 \frac{(-1)^nn!}{x^{n+1}}

Therefore, we can write

f 6 ( x ) = 6 ! ω 2 ω ( 1 ( x + ω ) 7 1 ( x + ω 2 ) 7 ) = 6 ! ω 2 ω ( ( x + ω 2 ) 7 ( x + ω ) 7 ( x + ω ) 7 ( x + ω 2 ) 7 ) \large f_6(x) = \frac{6!}{\omega^2-\omega}\left(\frac{1}{(x+\omega)^7} - \frac{1}{(x+\omega^2)^7}\right) = \frac{6!}{\omega^2-\omega }\left(\frac{(x+\omega^2)^7-(x+\omega)^7}{(x+\omega)^7(x+\omega^2)^7}\right)

x + ω 2 = ( x 1 2 ) + i ( 3 2 ) = r ( c o s θ i s i n θ ) x+\omega^2 = \left(x-\frac{1}{2}\right) + i\left(-\frac{\sqrt{3}}{2}\right) = r(cos\theta - isin\theta) ... ( 1 ) (1)

x + ω = ( x 1 2 ) + i ( 3 2 ) = r ( c o s θ + i s i n θ ) x+\omega = \left(x-\frac{1}{2}\right) + i\left(\frac{\sqrt{3}}{2}\right) = r(cos\theta + isin\theta) .... ( 2 ) (2)

Therefore,

( x + ω 2 ) 7 = r 7 ( c o s 7 θ i s i n 7 θ ) (x+\omega^2)^7 = r^7(cos7\theta-isin7\theta) ...... ( 3 ) (3)

( x + ω ) 7 = r 7 ( c o s 7 θ + i s i n 7 θ ) (x+\omega)^7 = r^7(cos7\theta+isin7\theta) ......... ( 4 ) (4)

ω 2 ω = i 3 \omega^2 - \omega = -i\sqrt{3} ............................... ( 5 ) (5)

Therefore from equations ( 3 ) (3) , ( 4 ) (4) and ( 5 ) (5) we can write,

f 6 ( x ) = 6 ! i 3 ( r 7 ( 2 i s i n 7 θ ) r 14 ) = 6 ! 3 2 s i n 7 θ r 7 \large f_6(x) = \frac{6!}{-i\sqrt{3}}\left(\frac{r^7(-2isin7\theta)}{r^{14}}\right) = \frac{6!}{\sqrt{3}}\frac{2sin7\theta}{r^7}

Now multiplying and dividing by s i n 7 θ sin^7\theta we get,

f 6 ( x ) = ( 6 ! ) ( 2 ) 3 s i n 7 θ × s i n 7 θ ( r s i n θ ) 7 \large f_6(x) = \frac{(6!)(2)}{\sqrt{3}}\frac{sin7\theta\times sin^7\theta}{(rsin\theta)^7} ...... ( 6 ) (6)

From equations ( 1 ) (1) and ( 2 ) (2) we can write

( x + ω ) ( x + ω 2 ) = 2 r i s i n θ (x+\omega)-(x+\omega^2) = 2ri sin\theta

ω ω 2 = 2 r i s i n θ \omega-\omega^2 = 2ri sin\theta

( 3 2 ) 7 = ( r s i n θ ) 7 \left(\frac{\sqrt{3}}{2}\right)^7 = (rsin\theta)^7

Now substituting value of ( r s i n θ ) 7 (rsin\theta)^7 from above in equation ( 6 ) (6) we get,

f 6 ( x ) = ( 6 ! ) ( 2 ) 8 ( 3 ) 8 ( s i n 7 θ ) ( s i n 7 θ ) \large f_6(x) = \frac{(6!)(2)^8}{(\sqrt{3})^8}(sin^7\theta)(sin7\theta)

But from equation ( 1 ) (1) (or even ( 2 ) (2) ) we can write θ = a r c t a n ( 3 2 x 1 ) \theta = arctan\left(\frac{\sqrt{3}}{2x-1}\right)

hence,

f 6 ( x ) = 20480 9 sin 7 ( arctan ( 3 2 x 1 ) ) sin ( 7 arctan ( 3 2 x 1 ) ) \boxed{\large f_6(x) = \frac{20480}{9} \sin^7 \left( \text{arctan} \left( \frac {\sqrt 3}{2x-1} \right) \right) \sin \left( 7 \cdot \text{arctan} \left( \frac {\sqrt 3}{2x-1} \right) \right)}

You're a genius!

Saurabh Chaturvedi - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...