Without log table!

Algebra Level 2

Solve it without using log table.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Saurabh Mallik
Jun 27, 2014

We need to solve the equation:

l o g e 2 × l o g b 625 = l o g 10 16 × l o g e 10 log_{e}2 \times log_{b}625=log_{10}16 \times log_{e}10

l o g b 625 = l o g 10 16 × l o g e 10 l o g e 2 log_{b}625=log_{10}16 \times \frac{log_{e}10}{log_{e}2}

l o g b 625 = l o g 10 16 × l o g 2 10 log_{b}625=log_{10}16 \times log_{2}10

l o g b 625 = l o g 10 16 × 1 l o g 10 2 log_{b}625=log_{10}16 \times \frac{1}{log_{10}2}

l o g b 625 = l o g 10 16 l o g 10 2 log_{b}625=\frac{log_{10}16}{log_{10}2}

l o g b 625 = l o g 2 16 log_{b}625=log_{2}16

l o g b 625 = l o g 2 2 4 log_{b}625=log_{2}2^{4}

l o g b 625 = 4 l o g 2 2 log_{b}625=4log_{2}2

l o g b 625 = 4 × 1 log_{b}625=4\times1

l o g b 625 = 4 log_{b}625=4

So, we get the equation as: b 4 = 625 b^{4}=625

b 4 = 5 4 b^{4}=5^{4}

b = 5 b=5

Thus, the answer is: b = 5 b=\boxed{5}

Prakkash Manohar
May 4, 2014

Here, number inside bracket represents the base.

log (b) 625 = log 16 x log (e) 10 / log (e) 2

log (b) 625 = log 16 x log (2) 10

log (b) 625 = log 16 x [1 / log (10) 2]

log (b) 625 = log 16 / log 2

log (b) 625 = log (2) 16

log (b) 625 = 4

b = 5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...