What's gamma doing inside?

Calculus Level 5

k = 1 ( 1 ) k k Γ ( k + 1 ) [ ( 2 k + 1 2 ) ! ] \large \displaystyle \sum _{ k=1 }^{ \infty }{ \dfrac { { \left( -1 \right) }^{ k } }{ k\Gamma \left( k+1 \right) \left[ \left( -\dfrac { 2k+1 }{ 2 } \right) ! \right] } }

If the value of the series above is in the form of

C π A / B ln D , \dfrac C{\pi^{A/B} } \ln D,

where A , B , C A,B,C and D D are positive integers with D D is a not a perfect power and A , B A,B coprime, find A + B + C + D A+B+C+D .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ishan Singh
Feb 15, 2016

Note that the series can be written as

k = 1 ( 1 ) k k Γ ( k + 1 ) Γ ( 1 2 k ) ( Γ ( x + 1 ) = x ! ) \displaystyle \sum_{k=1}^{\infty} \dfrac{(-1)^k}{k \ \Gamma(k+1) \Gamma \left( \frac{1}{2} - k\right)} \qquad (\because \Gamma(x+1) = x!)

By the infinite binomial expansion of ( 1 x ) n (1-x)^{n} , we have,

( 1 x ) n = 1 + k = 1 ( 1 ) k r = 1 k ( n r + 1 r ) x k \displaystyle (1-x)^{n} = 1 + \sum_{k=1}^{\infty} (-1)^k \prod_{r=1}^{k} \left(\dfrac{n-r+1}{r}\right) x^k

Now,

r = 1 k ( n r + 1 r ) = 1 2 3 ( n k + 1 ) k ! \displaystyle \prod_{r=1}^{k} \left(\dfrac{n-r+1}{r}\right) = \dfrac{1 \cdot 2 \cdot 3\cdot \ldots \cdot (n-k+1)}{k!}

= Γ ( n k + 1 ) Γ ( n k + 1 ) × 1 2 3 ( n k + 1 ) Γ ( k + 1 ) \displaystyle = \dfrac{\Gamma (n-k+1)}{\Gamma (n-k+1)} \times \dfrac{1 \cdot 2 \cdot 3\cdot \ldots \cdot (n-k+1)}{\Gamma (k+1)}

= Γ ( n + 1 ) Γ ( n k + 1 ) Γ ( k + 1 ) ( x Γ ( x ) = Γ ( x + 1 ) ) \displaystyle = \dfrac{\Gamma(n+1)}{\Gamma(n-k+1) \Gamma(k+1)} \qquad (\because x \Gamma (x) = \Gamma(x+1))

Thus,

( 1 x ) n = 1 + k = 1 ( 1 ) k Γ ( n + 1 ) Γ ( n k + 1 ) Γ ( k + 1 ) x k \displaystyle (1-x)^{n} = 1 + \sum_{k=1}^{\infty} (-1)^k \dfrac{\Gamma(n+1)}{\Gamma(n-k+1) \Gamma(k+1)} x^k

Putting n = 1 2 \displaystyle n = -\dfrac{1}{2} and dividing by x x , we have,

k = 1 ( 1 ) k Γ ( 1 2 ) Γ ( 1 2 k ) Γ ( k + 1 ) x k 1 = 1 x 1 x 1 x \displaystyle \sum_{k=1}^{\infty} (-1)^k \dfrac{\Gamma \left(\frac{1}{2}\right)}{\Gamma \left(\frac{1}{2}-k \right) \Gamma \left(k+1 \right)} x^{k-1} = \dfrac{1}{x\sqrt{1-x}} - \dfrac{1}{x}

k = 1 ( 1 ) k Γ ( 1 2 ) k Γ ( 1 2 k ) Γ ( k + 1 ) = 0 1 ( 1 x 1 x 1 x ) d x \displaystyle \implies \sum_{k=1}^{\infty} (-1)^k \dfrac{\Gamma \left(\frac{1}{2} \right)}{k \ \Gamma \left(\frac{1}{2}-k \right) \Gamma(k+1)} = \int_{0}^{1} \left(\dfrac{1}{x\sqrt{1-x}} - \dfrac{1}{x} \right) \mathrm{d}x

k = 1 ( 1 ) k k Γ ( 1 2 k ) Γ ( k + 1 ) = 1 Γ ( 1 2 ) [ 2 ln ( 1 x + 1 ) ] 0 1 \displaystyle \implies \sum_{k=1}^{\infty} \dfrac{ (-1)^k }{k \ \Gamma \left(\frac{1}{2}-k \right) \Gamma(k+1)} = \dfrac{1}{\Gamma\left(\frac{1}{2}\right)} \left[ -2 \ln (\sqrt{1-x} + 1) \right]_{0}^{1}

k = 1 ( 1 ) k k Γ ( 1 2 k ) Γ ( k + 1 ) = 2 ln 2 π ( Γ ( 1 2 ) = π ) \displaystyle \implies \sum_{k=1}^{\infty} \dfrac{ (-1)^k }{k \ \Gamma \left(\frac{1}{2}-k \right) \Gamma(k+1)} = \dfrac{2\ln 2}{\sqrt{\pi}} \qquad \left(\because \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \right)

A + B + C + D = 7 \implies A+B+C+D = \boxed{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...