Those Are Big Numbers!

Algebra Level 1

Order from greatest to least:

A = 2 5 100 A=\color{#D61F06}{25^{100}} \qquad B = 2 600 B=\color{#3D99F6}{2^{600}} \qquad C = 3 400 C=\color{#20A900}{3^{400}} \qquad D = 4 200 D=\color{#69047E}{4^{200}}

C > B > A > D C > B > A > D A > B > C > D A > B > C > D D > B > C > A D > B > C > A C > D > A > B C > D > A > B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Eli Ross Staff
Oct 29, 2015

Using the Rules of Exponents , we can write:

2 5 100 = ( 5 2 ) 100 = 5 200 \color{#D61F06}{25^{100} = (5^2)^{100} = 5^{200}} .

2 600 = 2 3 200 = ( 2 3 ) 200 = 8 200 \color{#3D99F6}{2^{600} = 2^{3\cdot 200} = (2^3)^{200} = 8^{200}} .

3 400 = 3 2 200 = ( 3 2 ) 200 = 9 200 \color{#20A900}{3^{400} = 3^{2\cdot 200} = (3^2)^{200} = 9^{200}} .

Now we can easily compare them!

9 200 > 8 200 > 5 200 > 4 200 \color{#20A900}{9^{200}} > \color{#3D99F6}{8^{200}} > \color{#D61F06}{5^{200}} > \color{#69047E}{4^{200}}

so C > B > A > D . C>B>A>D.

(Y) well done

Khizar Rehman - 5 years, 7 months ago

I was thinking exactly the same method

anukool srivastava - 3 years, 8 months ago

3^4> 2^6> 25^1> 4^2; So C > B > A > D

Chacon Alexandre
Nov 2, 2015

A = 25¹⁰⁰ = 5²⁰⁰

B = 2⁶⁰⁰ B = 2²⁰⁰.2²⁰⁰.2²⁰⁰ or B = D.2²⁰⁰ :: B > D

C = 3⁴⁰⁰ = 3²⁰⁰.3²⁰⁰ ; 3.3 > 5 :: 3²⁰⁰.3²⁰⁰ > 5²⁰⁰ :: C > A

if 2.2.2 < 3.3 then 2²⁰⁰.2²⁰⁰.2²⁰⁰ < 3²⁰⁰.3²⁰⁰ or B < C

D = 4²⁰⁰ = 2⁴⁰⁰ :: D < A

B > D C > D A > D
B > A B > C
C > A ::

C > B > A > D

Mahmoud Meeda
May 29, 2020

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...