What's in the denominator?

Calculus Level 3

Given that for x > 0 x>0 , y = y ( x ) > 0 y=y(x)>0 , e cot ( y ) = x x + x ln ( x ) e^{-\cot(y)}=x^x+x\ln(x)

and implicit differentiation of the above equation gives d y d x = ( x x + 1 ) ( ln ( x ) + 1 ) ( csc 2 ( y ) ) ( x x + x f ( x ) ) \frac{dy}{dx}=\frac{(x^x+1)(\ln(x)+1)}{(\csc^2(y))(x^x+xf(x))}

where f ( x ) f(x) is a function involving x x (not necessarily equalling y y ), find f ( x ) f(x) .

e x e^x x 2 + 1 \sqrt{x^2+1} sin ( x ) \sin(x) tan 2 ( x ) \tan^2(x) 1 x \frac{1}{x} ln ( x ) \ln(x) sec ( x ) \sec(x)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Wee Xian Bin
Aug 13, 2016

Implicit differentiation of e cot ( y ) = x x + x ln ( x ) e^{-\cot(y)}=x^x+x\ln(x) gives d y d x ( e cot ( y ) ) ( csc 2 ( y ) ) = x x ( ln ( x ) + 1 ) + ln ( x ) + 1 \frac{dy}{dx} (e^{-\cot(y)}) (\csc^2(y)) = x^x(\ln(x)+1) + \ln(x)+1 d y d x ( e cot ( y ) ) ( csc 2 ( y ) ) = ( x x + 1 ) ( ln ( x ) + 1 ) \frac{dy}{dx} (e^{-\cot(y)}) (\csc^2(y)) = (x^x+1)(\ln(x)+1) rearrangement gives d y d x = ( x x + 1 ) ( ln ( x ) + 1 ) ( csc 2 ( y ) ) ( e cot ( y ) ) \frac{dy}{dx} = \frac{(x^x+1)(\ln(x)+1)}{(\csc^2(y))(e^{-\cot(y)})} substitution back the expression of e cot ( y ) e^{-\cot(y)} gives d y d x = ( x x + 1 ) ( ln ( x ) + 1 ) ( csc 2 ( y ) ) ( x x + x ln ( x ) ) \frac{dy}{dx} = \frac{(x^x+1)(\ln(x)+1)}{(\csc^2(y))(x^x+x\ln(x))} hence f ( x ) = ln ( x ) f(x)=\ln(x)

Addendum: To differentiate x x x^x , consider z = z ( x ) = x x z=z(x)=x^x ln ( z ) = x ln ( x ) \ln{(z)}=x\ln{(x)} then differentiate both sides implicitly ( d z d x ) z = ln ( x ) + 1 \frac{(\frac{dz}{dx})}{z}=\ln(x)+1 therefore d z d x = z ( ln ( x ) + 1 ) = x x ( ln ( x ) + 1 ) \frac{dz}{dx}=z(\ln{(x)}+1)= x^x(\ln{(x)}+1)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...